DNA Probe Column Chromatography: A New Method
for the Detection of a Point Mutation on Genomes

Yasutami MITOMA
Hiroaki YAMAGISHI
Takahiko ISHIKURO
Hidechika HAYASHI

Experiments are described that have led to the development of a simple and reproducible method for the detection of a point mutation of genomes. A combination of salt-gradient DNA probe column chromatography and PCR technology could successfully detect a point mutation of genomes. The method is subject to easy automation.

1. 緒 言

近年、遺伝子工学の発展により生物の遺伝子レベルの解析が可能となった。特にヒトの遺伝子の解析は急速な勢いで進められてきており、酵素、レセプター、構造蛋白質等の遺伝子についても核酸の塩基配列レベルでの知見が得られつつある。また、それらの異常によって引き起こされる遺伝病、病等のメカニズムもその結果として明らかになってきている。遺伝病の多くは代謝異常であるがそれらをつかさどる酵素、レセプター、構造蛋白質の異常に他ならない。その酵素、レセプターといった蛋白質の異常はそれその設計図である遺伝子の異常を反映している。遺伝子の異常もも突然変異は遺伝子上におこった挿入、欠失成いは置換（点突然変異）によって引き起こされる。また、本来ある機能をもった蛋白質の遺伝子が、塩基の置換によって活性化しその機能に重大な変化をもたらすことが、癌化に重要な役割を担うと考えられている。これら分子生物学で得られた知見は医学の臨床診断分野にフィードバックされ、病態の把握、遺伝病の診断等への応用が期待されている。従来、ヒトの遺伝子の解析（特に遺伝病）においては、全染色体のデオキシリボ核酸（DNA）を抽出し、サザンプロットハイプリダイゼーション法により遺伝子上の変異を検出する方法が主に用いられてきたが、全工程に長時間を要し、臨床診断に応用するには現実性等にも問題があった。一方1985年にポリメラーゼチェーンリアクション法（PCR法）が開発され、任意の遺伝子の in vitro での増幅が可能となったことから、臨床診断を目的とした遺伝子の解析が現実のものとなってきた。PCR法を用いた遺伝子上の点突然変異の検出にはいくつかの方法があるが、一般的にはドットハイプリダイゼーション法が用いられている。この方法は、PCR法によって増幅したDNAをフィルター上に固定化し、標識DNAプロープをハイプリダイズさせた後、ある条件下で洗浄し、標
識プローブがフィルター上に残ったか否かで遺伝子上の変異の有無を判定する方法である。DNAのハイプリッドの安定性は温度、イオン強度、pHといった因子によって影響を受けるので、ドットハイプリダイゼーションの場合は、一般的には一定イオン強度の下で温度を変化させる方法である。一定温度のもとで溶液のイオン強度を変化させる方法によって、ハイプリッドの安定性の違いを検出する。これは遺伝子上に変異があったプローブと試料DNAとのハイプリッドの安定性が低下し、洗浄時に洗い流されるためである。この方法は同時に多試料を処理する際には有効な方法であるが、洗浄時に微妙な温度管理が必要であり、また試料DNAをいちいち固定化しなくてはならず工程上の煩雑な点がある。

そこでアフィリティークロマトの考え方で合成DNAプローブ側を固定化したゲルを充填したカラムを用い、試料をカラムに導入し、カラム内部でプローブとのハイプリダイゼーションを行い、溶離条件を変化させることでハイプリッドの安定性に従って溶出させることによって点突然変異を検出しようとするとアプローチも行われてきている3)。この場合2通りの考え方があり、一つは染離液を一定イオン強度とし、カラムに温度勾配をかけ試料DNAを溶出する方法で、もう一つの考え方は、一定温度の下で、イオン強度を連続的に変化させる方法である。我々は後者の考え方を基に、カラムクロマト方式により遺伝子上の変異を検出する方法について検討を行い自動化に適した方法を開発したのでここに報告する。

2. 材料および方法

（1）原理

DNAのハイプリッドの安定性は温度、イオン強度、pHに依存している。例えば一定イオン強度の場合、温度を上昇させるとハイプリッドの安定性は低下する。また一定温度においてハイプリッドの安定性はイオン強度の減少にともない低下する。DNAプローブカラムクロマトグラフィーは一定温度の下で、移動相のイオン強度を連続的に低下させることにより、プローブDNAとハイプリデイズした試料DNAをそのハイプリッドの安定性にしたがって溶出分離することを原則としている。しかも安定なハイプリッド形成言えればプローブDNAとミスマッチを有する試料は完全相補の試料に比べて早く溶出されることになる。従ってミスマッチの検出を、溶出時間の差として検出する事が可能となる。溶出された試料DNAはフローセルで連続的にモニターされる。

（2）オリゴヌクレオチド及びその5'-アミノ化誘導体の合成

実験に使用したオリゴヌクレオチドの合成は固相法によるβ-シアノエチルフォスフォアミド法を用い合成装置（ABI381A）により調製した。また5'-末端にアミノ基を有するオリゴヌクレオチド誘導体の調製はFig. 1に示した方法により行った。

Fig. 1 Preparation of 5'-amino-oligonucleotide
（3）PCR 法に使用するプライマーの精製

PCR 法のプライマーとして使用するオリゴヌクレオチドの精製は常法に従い行った。5'末端に蛍光色素 FITC 標識したプライマーの調製は以下の様に行った。300 μg の 5'アミノ化オリゴヌクレオチドを 230 μl の 0.2mol 磷酸緩衝液 (pH 9.0) と 20 μl の FITC の DMF 溶液 (10 mg/ml) を混合し、室温にて 30 分間反応させた。未反応の FITC をゲルろ過で除去した後、標識核酸分画を更に ODS-120T にて分取、精製を行った。（Fig. 2 参照）

（4）DNA プロープ固定化ゲルの調製

900 μg の 5'アミノ化オリゴヌクレオチドを 3 ml の 1mol 構酸緩衝液 (pH 9.0) に溶解し、トレシルール 5PW あるいは NPR（東証法）300 mg と混ぜ、室温で 1 時間反応させた。反応後上清のオリゴヌクレオチドの減少量を測定し固定化量を推定した。上清を除き、0.1 mol Tri-HCl 緩衝液 (pH 8.5) でプロッキングを行ったのち、常法に従ってカラムに充填した。（Fig. 3 参照）

（5）試料調製

まずモデル試料は常法に従って精製したオリゴヌクレオチドを使用した。また、より実験に合いモデル試料としては、突然変異あるいは天然型プロテオーゼ遺伝子を組み込んだプラスミド DNA を用いて PCR を行って特定領域を増幅して調製した DNA 断片（2 本鎖）を用いた。更に 1 本鎖の蛍光標識 DNA を調製する目的には非対称 PCR 法を行った。PCR 試料は精製することなく使用した。

（6）クロマト及び装置構成

DNA プロープカルムは恒温槽中に保持し溶液 A（塩溶液）で平衡化した後、試料を注入しグラジェントを開始（15 分後に溶液 B 100%）した。塩濃度勾配はフローセルタイプの電導度計で、溶出される試料は UV260nm 成は蛍光検出器（ex. 490 nm, em. 520 nm）でそれぞれモニターした。装置構成は Fig. 4 に示す。

Fig. 2 FITC labeling and purification of 5’ amino-oligonucleotide

Fig. 3 Immobilization of 5’ amino-oligonucleotide to Tresyl activated gel
3. 結果および考察

(1) DNA プローブカラムクロマトの条件設定

オリゴヌクレオチドのハイブリダイゼーションは一般的に中性付近、高塩濃度（0.75〜1.0 モル NaCl）かつハイブリッドの Tm 値（核酸が50%変性している温度）から5°C低い温度が最適条件とされている。合成オリゴヌクレオチドの Tm 値は次式

\[Tm(°C) = 2(A+T) + 4(G+C) \]

(A, T, G, C はオリゴヌクレオチド中の個々の塩基の数)

で近似される。今回実験に使用したオリゴヌクレオチドの GC% は50%前後なので Tm 値は55〜65°C となり、ハイブリダイゼーション温度は60°Cを基準に検討を行った。温度は試料の溶解パターンにかなり敏感に影響を与える要因のひとつである。合成オリゴヌクレオチドを試料とした実験では50°C〜65°Cでもプローブの捕捉には殆ど影響しない。しかし、50°Cにて溶解するとピークが広がる傾向が認められた。（Fig. 5 参照）塩濃度勾配の開始時での溶媒（溶媒液 A）としては当初核酸の実験には古くから用いられてきた 5×SSC (0.75 M NaCl, 75 mM Na-Citrate pH 7.0) を使用したが、クロマトグラムのベースラインに変動が認められたため、20 mM 適酸緩衝液に変更し、NaCl の濃度の検討を行った。合成オリゴヌクレオチドを試料として用いた場合、0.325モル〜1.0モル NaCl 濃度で充分プローブに捕捉されるが、低塩濃度では試料の分子量が大きくなると捕捉されにくい傾向が認められた。一方、溶媒液 B の溶媒としては当初純水を使用したが、10%アセトニトリルを添加することにより溶出を早めるとときにピーク形状を錐にする効果がある事が分かった。（Fig. 6a, b 参照）溶出速度は0.5〜1 mL/min. で検討を行ったが、高流速ではプローブの捕捉が低下する傾向があったので 0.5 mL/min. とした。

(2) DNA プローブ固定化ゲルの調製

5'アミノ化オリゴヌクレオチドを固定化するための担
モデル試料を分離する実験においては、2種類の合成オリゴヌクレオチドを使用した。一つは固定化プロープに対して中央部分で1塩基のミスマッチを形成するよう設計されたもの、もう一つは完全に相補的な配列を有するものである。また、より実際の試料に近いモデルとして、プロウロキナーゼ遺伝子の変異型及び天然型21を解析としてPCR法により増幅して調製したDNA断片を試料として用いた。合成オリゴヌクレオチド（21mer-24mer：1本鎖）を試料として用いた場合、これに対するプロープの捕捉効率はかなり高いかが、PCR断片（200塩基対の2本鎖）を試料として用いた場合は、殆どプロープに捕捉されず、カラムを素通りしてしまった。これは2本鎖DNA断片の場合、溶液状態では変性で一本鎖に解離していても、実験に使用したカラムクロマトグラフィーの溶媒液条件下では速やか
に2本錠への再合が起こり、プロープDNAに捕獲されないためと考えられた。そこで、非対称PCR法により一本錠断片の調製を行うことにした。非対称PCRは二種類のプライマーのうち一方の初期濃度を他方のそれに比べて高く設定して反応を開始するため、通常のPCRにくらべて収量が低下しやすい。そこで一方のプライマーに塩化ラベル化剤で標識を施すことによって高感度化を試みた。しかし、一本錠断片の場合であっても分子量が大きくなるにつれて自己で構造を形成しやすくなり、プロープに捕獲されにくくなる。そこで、非対称PCRで用いるプライマーどうしの距離を必要最小限に設定し、断片の大きさは78merとなるようにした。

（Fig.7参照）

（4）DNAプロープカラムクロマトグラフィー

（1）オリゴヌクレオチド21量体を試料としたミスマッチ検出

Fig.8に合成オリゴヌクレオチド21量体混合物（塩基ミスマッチ及び完全相補）の分離例を示した。横軸はUV260nmでの吸光度、縦軸は時間経過（分）を表している。プロープ並びに試料オリゴヌクレオチドの塩基配列は以下の通り。

プロープ'5'TGTACGACCTGCCCCCATT'3'
変異核塩基'5'ACATGCTAAGCGGGGTTA'3'
ミスマッチ'5'ACATGCTATCGGGGGTTA'3'

＊印はミスマッチの位置を示している。ミスマッチ型及び完全相補型試料のそれぞれの溶出時間は21分、23分で明確に区別された。

（2）オリゴヌクレオチド24量体を試料としたミスマッチ検出

Fig.6-a,bはプロワロキナーゼ遺伝子の突然変異検出用のプロープカラムを用いた、同じく合成オリゴヌクレオチド（24量体）の分離例を示したものである。プロープはここでは変異型プロワロキナーゼに相補的になるよう設計されている。塩基配列は以下の通り。

Wild type proUK gene

S'-----5'GCTTGGACGGATCGATGCTGCAAGTGCACACTCAGGCGAGATGG
3'-----CACAGGGGCCTCATCCAGTGGTTGACGATCGTGGACGTTAACAC

5'-----5'GACTCAGGAGAAGAGAGAAGAAGATG

Mutant proUK gene

Fig.7 In vitro amplification site of proUK gene by PCR

Fig.8 Separation of oligonucleotides by DNA probe column

Temperature 60℃
Gradient; Solvent A2.5×SSC
Solvent B H2O
Solvent A to Solvent B/15 min.
Column size ID 6.0×50 mm
Gel HBV 21 mer–SPWFThin scale 0.08 O.D.
Chart speed 2 mm/min.
Monitor 260 nm
Flow rate 0.5mL/min.
Sample Synth. 21 mer mixture

特にFig.6-bでは溶媒液B側にアセトニトリルを10%添加することで、溶出が早くなりピークが鋭くなったことが分かる。塩基のハイブリッドの安定性は塩基間の水素結合が挙げられるが、水溶液中では塩基間のスタッキングによる疎水的相互作用も重要な因子の一つである。アセトニトリルの添加は溶媒の極性を低下することによって、塩基間の疎水的相互作用を弱め溶出を早める効果があると思われる。一方、木ではカラム内に塩基濃度の勾配を形成していると考えられる。またカラム出口側は入口側に比べて高塩濃度で、オリゴヌクレオチドの再合が起こりやすい条件となっている。従って一度プロープから離れた試料もカラムの出口方向側で再び捕獲されるため、試料の濃縮が起こりピークが鋭くなるのではないかと推定される。

（3）非対称PCR法により調製された試料でのミスマッチ検出

Fig.9に先のプロワロキナーゼ用DNAプロープカラムを用い、試料として変異型及び天然型のDNAを飼型として非対称PCRで調製した蛻光標識78merの
4. ま と め

これらの結果から、塩濃度勾配法による DNA プロープカラムクロマトグラフィーとポリメレースチミューショング法を組み合わせることにより、汎用の液体クロマトグラフィーシステムを用いて、遺伝子上に起こった一塩基置換を検出すことが可能であることが実証された。さらに、本法は同様の目的に使用されている他の方法に比肩して、自動化にも適している。

本実験を進めるに当たり、特に DNA プロープ固定化ゲル調製に関しては、有限工場ゲル開発課の方々の御協力を賜りました。厚く御礼申し上げます。また、点突然変異検出モデルとして使用したプラズミド DNA を提供していただいた生物工学研究所第1研究室の方々に厚く御礼申し上げます。

文 献

5）三吉信民, 山岸成明, 林秀知宏; 「第13回分子生物学, 会講演要旨集」 p. 301 (1990)
著者

氏名 三 奥 恵 民
 Yasutami
 MITOMA
入社 昭和59年4月1日
所属 科学計測事務部
 開発部
 副主任研究員

著者

氏名 山 岸 裕 明
 Hiroaki YAMAGISHI
入社 昭和60年4月1日
所属 科学計測事務部
 開発部
 副主任研究員

著者

氏名 石 黒 敬 彦
 Takahiko ISHIGURO
入社 昭和58年4月1日
所属 科学計測事務部
 開発部
 主任研究員

著者

氏名 林 秀 知 佳
 Hidehiko HAYASHI
入社 昭和58年10月16日
所属 科学計測事務部
 機器製造部
 診断開発課
 課長