Development of Super System Controller
and 8010 Series System

Makoto KASHIBE
Kazuhiko OHTA
Keiichi HOUSAKE
Mitsuru FUKAMACHI
Mitsuru MATSUZAKI

Super System Controller and CCP & 8010 series HPLC system based on a new concept have been
developed. All CCP & 8010 series equipments can be connected to Super System Controller through
communication interfaces and are subject to remote control of integrated data processing function of the latter
system.

Super System Controller has a versatile data processing function and performs analyses based on the data
processing and control conditions downloaded from a host computer, uploading the results of analyses to the
host through a RS232C communication interface.

1. は じ め に

機器開発室では、昭和59年10月 CCP & 8000 シリー
ズを上市し本格的に汎用液体クロマトグラフィー分野に
参入した。今回これらの全商品について高機能化、高速
度化、リモートコントロール機能の付加、コストダウン
を目的とし全面モデルチェンジを行ない、CCP & 8010
シリーズとして商品化を終了した。加えて全自動分析を
意識し、これらの装置をシリアル通信で接続し集中的に
管理・制御を行ない同時にデータ処理を行なうスーパー
システムコントローラ (SC-8010) を新規に開発し、商
品化を終了したのでその概要を報告する (Photo. 1)。

Photo. 1 Outward of CCP & 8010 series system
2. 開発コンセプト

近年液体クロマトグラフィー分野において多くのメーカーが、分析の自動化（LA化）のための装置の開発に力を注いでいる。

液体クロマトグラフィーにおいて分析の自動化を行なう場合その頭脳となる制御装置には、
1）あらゆるシステム構成に対応できること。
 （分析対象に合わせてシステム構成が異なる）
2）すべての装置を集中的に制御・管理できること。
3）何らかの原因である装置にトラブルが発生した場合、すべての装置に対して最適な処置を行なうこと。
4）外部の機器（コンピュータ等）と情報の授受が可能であること。
5）データ処理機能を有すること。
6）ユーザ固有の問題が発生した場合、解決する手段を有すること。

が必要であると考え、これらに重点を置きシステムコントローラの開発を進めた。

また3.5インチのFDDを内蔵させ、システムプログラムのフロッピーディスクでのユーザへの供給、ユーザが設定したパラメータ・分析結果の保存・読み出しを可能とし専用システム化・個人用システム化に向けたもの。

一方汎用装置は、
1）上記システムコントローラと接続し、システムコントローラからのリモートコントロール機能を持つこと。
2）同様にパーソナルコンピュータと接続しリモートコントロールできること。
3）高機能化を実行すること。
4）高感度化を実行すること。（検出器）
5）徹底的なコストダウンを行なうこと。

に重点を置き開発を進めた。

3. 8010シリーズ商品の概要

今回のモデルチェンジにより、すべての8010シリーズ商品にマイクロコンピュータを搭載した。マイクロコンピュータ、CP シリーズのポンプ及びポンプコントローラで実績のあるインテル社の8031を採用した。このマイクロコンピュータによりキーによって設定される、あるいは通信によって受け取った指令・パラメータを取り込み装置を制御しLEDの表示を行う（Fig. 1）。

通信インタフェースにはRS232C及びRS422の二つのインタフェースを装備した。RS232C インターフェースは、コンピュータと接続するためのインタフェースでコンピュータと一対一で接続しリモートコントロールを可能とする。RS422 インターフェースは、システムコントローラと接続するためのインタフェースで最大14台の装置をシステムコントローラに接続し制御

Fig. 1 Schematic Diagram of 8010 Series Equipment.
Fig. 2 Rear View of UV-8010

Table 1 CCP & 8010 Series Equipments

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV-8010</td>
<td>UV detector</td>
</tr>
<tr>
<td>R I -8010</td>
<td>Refractometer</td>
</tr>
<tr>
<td>R I -8012</td>
<td>Refractometer</td>
</tr>
<tr>
<td>F S-8010</td>
<td>Fluorescence detector</td>
</tr>
<tr>
<td>E C-8010</td>
<td>Electrochemical detector</td>
</tr>
<tr>
<td>A S-8000</td>
<td>Auto sampler</td>
</tr>
<tr>
<td>C O-8011</td>
<td>Column oven</td>
</tr>
<tr>
<td>R E-8010</td>
<td>Reactor</td>
</tr>
<tr>
<td>P X-8010</td>
<td>CCP controller</td>
</tr>
<tr>
<td>S V-8010</td>
<td>Value unit</td>
</tr>
<tr>
<td>M V-8010</td>
<td>Value unit</td>
</tr>
<tr>
<td>M V-8011</td>
<td>Valve unit</td>
</tr>
<tr>
<td>I F-8010</td>
<td>Interface unit</td>
</tr>
<tr>
<td>I F-8011</td>
<td>Interface unit</td>
</tr>
<tr>
<td>P S-8010</td>
<td>Power control unit</td>
</tr>
<tr>
<td>F C-8000</td>
<td>Fraction collector</td>
</tr>
</tbody>
</table>

RS232C/RS422 最寄りはアドレススイッチの第 5 ビットで行なう。DSUB 9P コネクタは、システムコントローラと接続されている場合次の装置を信号を渡すためのコネクタである。

Table 1 に 8010 シリーズ装置の一覧を示す。

次に 8010 シリーズの代表的な装置の特徴を紹介する。

(1) 紫外可視検出器 (UV-8010)

- 重水素・ハロゲンの二つのランプの使用
- 波長範囲の拡大 195[nm]-700[nm]
 （従来は 195[nm]-600[nm])
- 通信インタフェースの搭載
- 約 16% のコストダウン

(2) 示差膨張計 (RI-8010)

- 操作性的向上（リフレンスストップ機能）
- ノイズレベルの向上（従来の約 4 倍）
- 通信インタフェースの搭載
- 約 18% のコストダウン

(3) 濃縮検出器 (FS-8010)

- 通信インタフェースの搭載
- 自社生産による約 16% のコストダウン

4. システムコントローラの概要

(1) ハードウェア

システムコントローラは、本体、キーボード、CRT ディスプレイ、プリンタ・フロッピーディスク使用する。Fig. 3 にブロック図を示す。CPU には日本電気 μPD70216 を採用した。キーボードは専用フロッピードライブ使用し、本体とはシリアル通信により情報の授受を行なう。

CRT ディスプレイは市販されている日本電気製のものを採用した。補助記憶には 3.5 インチ 2HD タイプのフ
Table 2 Option Cards

<table>
<thead>
<tr>
<th>Card name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric co-processor</td>
<td>A card to perform high speed calculation for acquired data</td>
</tr>
<tr>
<td>RS232C</td>
<td>An Interface card to receive parameters and commands for analysis from a computer or to transmit the result of the analysis to the computer</td>
</tr>
<tr>
<td>A/D convert</td>
<td>An interface card to convert analog signal of a detector to digital data</td>
</tr>
<tr>
<td>CCP control</td>
<td>An interface card for CCP series pumps to control by System Controller</td>
</tr>
<tr>
<td>Communication master</td>
<td>A communication interface (RS422) card to control 8010 series equipments</td>
</tr>
</tbody>
</table>

Fig. 4 Key Board

Fig. 5 Bus Connection

Fig. 6 Star Connection
CRT RECORDER

![CRT Recorder](image)

Fig. 7 CRT Recorder

Fig. 8 Horizontal Baseline Processing

Fig. 9 Tangential Skimming

ロールキーはシステムコントロールの開始、停止、一時停止、続行を指示する。データ処理キーはデータ収集の開始、終了を指示する。レコーダキーは、プリンタプロッタをレコーダとして使用する場合にレコードの開始、終了を指示する（Fig. 4）。

システムコントローラーと各装置はリアルタイム通信により接続し情報の授受を行う。接続方法には Fig. 5 に示すようなバス方式と Fig. 6 に示すようなスタータ方式等があり、それぞれ長所・短所を有している。スタータ方式は直接システムコントローラと各装置の通信が可能であり効率の良い通信を行うことができる。しかし各装置に対するインターフェースがシステムコントローラに必要となりハードウェアが複雑になる。一方バス方式では、通信方式はスタータ方式に比べ複雑になるがハードウェアは簡素化できる。今回はコストダウンの目的からバス方式を採用した。

(2) データ処理機能

データ処理部においては CP-8000 (CCP & 8000 シリーズのデータ処理装置) の豊富なデータ処理機能をベースとし、更にカラーナラフィックの機能を生かし操作性の向上を図っている。

(1) CRT レコーダ機能

CRT ディスプレイをレコーダとして使用しクロマトグラムを表示する。同時に流量、検出器の出力電圧、検出器の設定波長 (UV-8010, FS-8010), 検出器の拡張電圧 (EC-8010) を表示しグラジェント比率、圧力、温度を表示したグラフとしてクロマトグラムと同時に描くことができる。（Fig. 7）。

(2) マニュアル波形処理機能

CRT ディスプレイ上に得られたクロマトグラムを表示しカーソル移動キーとフロッグンキーを用いて操作し、ベースラインの引き直し、ピーク分割を自由に行うことができ、その結果をレポートとして出力する機能。

(3) 波形分離機能

従来、不分散ピークが得られた場合縦切处理（Fig. 8）あるいはスキミング処理（Fig. 9）が行われていた。今回これに非線形最小二乗法を用いピークをガウス分布曲線

\[f(t) = h \cdot \exp\left(-\ln 2 \left(t - t_0 \right)^2 / W^2 \right) \]
Fig. 10 Peak Separation by Using Nonlinear Least Squares Method

Fig. 11 Control Flow

Fig. 12 Timer Control

Table 3 Status of System Control

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOP</td>
<td>Stop of system control</td>
</tr>
<tr>
<td>RUN</td>
<td>Running of system control</td>
</tr>
<tr>
<td>PAUSE</td>
<td>Temporary stop of system control</td>
</tr>
<tr>
<td>EVENT WAIT</td>
<td>Waiting for a termination of action</td>
</tr>
</tbody>
</table>

Fig. 11にキーボードの操作と制御の流れを示す。システムコントロールには Table 3 に示すように4つの状態が存在する。STOP 状態で [SHIFT] + [START] キーを入力すると RUN 状態となりセットアップ処理を開始する。セットアップ処理の終了で自動的に PAUSE 状態になる。この状態で [RESET] キーを入力すると RUN 状態となり分析処理を開始する。サンプル数だけ分析処理を行ない、シャットダウン処理を行なった後 STOP 状態になる。この間いつでも [PAUSE]、[RESET] キーの入力により一時中断、再開を指示することができる。

システムコントロール機能の特長は、
1）24時間タイマー機能

1日単位で1週間のセットアップ処理の開始時刻の設定を行なうことができる。この時、電源ユニット（PS-8010）が接続されている各装置の電源自動入順序を CRTディスプレイ上で確認することができる（Fig. 12）。

2）エラー処理機能

システムコントローラに接続可能な全ての発生しやすいエラー及びエラーが発生した場合の処理の登録を行なっており、エラーが発生した場合その時に接続されている全ての装置に対して最適な処理を行なうことができる。

Table 4 に発生するエラーとエラー処理の関係を示

(62)
Table 4 干渉排除

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Error</th>
<th>Pump</th>
<th>Gradient</th>
<th>CO-8011/RE-8010</th>
<th>EC-8010</th>
<th>Auto sampler</th>
<th>Trouble shooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP</td>
<td>Mechanical error</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Temperature error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pressure error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS-48</td>
<td>Overrun error</td>
<td>Continue</td>
<td>Hold at initial state</td>
<td>Hold</td>
<td>Hold</td>
<td>Wait</td>
<td>1</td>
</tr>
<tr>
<td>AS-8000</td>
<td>Overrun error</td>
<td>Continue</td>
<td>Hold at initial state</td>
<td>Hold</td>
<td>Hold</td>
<td>Wait</td>
<td>1</td>
</tr>
<tr>
<td>CO-8011</td>
<td>Leak error</td>
<td>Stop</td>
<td>Stop</td>
<td>Power off</td>
<td>Stop</td>
<td>Stop</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Temperature error</td>
<td>Continue</td>
<td>Hold at initial state</td>
<td>Power off</td>
<td>Hold</td>
<td>Wait</td>
<td>2</td>
</tr>
<tr>
<td>RE-8010</td>
<td>Temperature error</td>
<td>Continue</td>
<td>Hold at initial state</td>
<td>Power off</td>
<td>Hold</td>
<td>Wait</td>
<td>2</td>
</tr>
<tr>
<td>EC-8010</td>
<td>Leak error</td>
<td>Stop</td>
<td>Stop</td>
<td>Power off</td>
<td>Stop</td>
<td>Stop</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Auto zero error</td>
<td>Continue</td>
<td>Hold at initial state</td>
<td>Power off</td>
<td>Hold</td>
<td>Wait</td>
<td>3</td>
</tr>
<tr>
<td>RI-8010</td>
<td>Over range error</td>
<td>Continue</td>
<td>Hold at initial state</td>
<td>Hold</td>
<td>Hold</td>
<td>Wait</td>
<td>1</td>
</tr>
<tr>
<td>RI-8012</td>
<td>Temperature error</td>
<td>Continue</td>
<td>Hold at initial state</td>
<td>Hold</td>
<td>Hold</td>
<td>Wait</td>
<td>1</td>
</tr>
<tr>
<td>UV-8010</td>
<td>Leak error</td>
<td>Stop</td>
<td>Stop</td>
<td>Power off</td>
<td>Stop</td>
<td>Stop</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Lamp error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auto zero error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overrun error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-8010</td>
<td>Leak error</td>
<td>Stop</td>
<td>Stop</td>
<td>Power off</td>
<td>Stop</td>
<td>Stop</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Auto zero error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overrun error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Troubleshooting

1. Continues analysis for current sample then performs Shut Down process if "RECOVER" is not done.
2. Waits 30 minutes then performs Shut Down Process.
3. Stops all controls.

() Dashed lines are used for Spectrum Measurement

Fig. 13 Flow Diagram for Spectrum Measurement

Fig. 16 Automatic Analysis System by Computer

セル内に閉じ込め波長を変化させ、それに対する出力を得てレポートを作成する機能（Fig. 14）。

Fig. 15 にシステムコントローラ及び8010シリーズの装置を用いてタンパク質構成アミノ酸の分析（11）を行なった場合の分析条件、配管、ファイル設定例を示す。

(63)
Fig. 14 Spectrum Measurement Report
Fig. 15 Separation of Amino acid by Using CCP & 8010 Series Equipments
5. 今後の展望

現在、未知のサンプルを分析する場合最適な分離条件を決定するには試行錯誤に頼るしかないが、当社ではこの分離条件をコンピュータを用いて予測する研究を進めており、実用化へ向けた第一歩を踏み出したところである。

次期システムコントローラにおいては、この機能を搭載し全自動分析システムを構築したいと考えている。

また現時点においては、システムコントローラはRS232C インターフェースにより外部のコンピュータの指示を受けることができるので、コンピュータにおいて分析条件等が設定できればコンピュータよりその分析条件及び指令を受信しそれに従い分析を行ない結果を送信することが可能であり全自動システムを構築することができる。(Fig. 16)。今回はこの意味において、液体クロマトグラフィーの全自動化への布石を打つことができたと言える。

6. おわりに

CCP & 8010シリーズ装置及びシステムコントローラの開発に御尽力いただいた機器製造部、企画開発部の諸君と開発製造に御協力いただいた関連会社の皆様に感謝致します。

文献

1）CCP & 8000 シリーズ 分析マニュアル “タンパク質構成アミノ酸の分析（OPA 法）” 東洋曹達（1986）