ゼオライトの合成とその特性

板 橋 慶 治
田 川 一 成

Synthesis and Characteristic Properties of Zeolites

Keiji ITABASHI
Kazushige IGAWA

Zeolite has excellent properties as adsorbents, ion exchangers, and catalysts for wide industrial uses. The fundamental properties of zeolites attributed to the structural characteristics of aluminosilicate frameworks are described. Synthetic methods of zeolites are summarized and the TSK method for producing TSZ series of siliceous zeolites are outlined.

1. はじめに

当社では昭和44年に、自社技術によりA型及びX型ゼオライトを基本とする吸着剤「ゼオラム」を商品化してゼオライト事業への第一歩を踏み出して以来、ゼオライトの合成とその利用技術について工業界のニーズに対応すべく、常にそのfollowを行って来た。昭和56年には、当時リン酸系ビルダーに代る合成洗剤用ゼルバーとして求められていた、A型ゼオライトを基本とするゼオライトビルダー「ドロビルダー」の商品化を行った。また、このような当社の合成技術の栄光をもとに、主に触媒用途を対象とした3種類のハイシリカゼオライト「TSシリーズ」の工業的製造法を昭和58年に確立した。

このような経緯を経てゼオライトの特性である吸着、イオン交換、触媒作用を利用した三大分野への進出を果たした。

ゼオライトの吸着分離技術分野での応用は古く、合成ゼオライトの工業利用が始まって以来30年の歴史を有するが、工業技術の高度化、多様化に伴いそのニーズは高度化、効率化を求めてますます高まっているのが現状である。また触媒の分野においても、石油危機以来の脱石油をめざしたC4化学を始めとして、石油の重質化対策や石油化学製品製造時の効率的触媒としてゼオライトは熱い期待を受けている。

ゼオライトは合成したままの粉末状態で用いられる事は稀である。吸着分離あるいは触媒特性を発現させる為のイオン交換方法や造粒技術、焼成技術も同時に開発され、あらゆるニーズに対応できる体制が整っている。

2. ゼオライトの構造とその特性

[1] 骨格構造

ゼオライトとは結晶性含水アルミノ珪酸塩の総称であり、天然ゼオライトと合成ゼオライトに大別される。その化学組成は一般式M₂nO・Al₂O₃・xSiO₂・yH₂O（nは陽イオンMの原子価、xは2以上の数、yは吸着水量を表す）で表される。xの値は一般にシリカ/アルミナ比あるいは酸性比と呼ばれ、ゼオライトの耐熱性や耐酸性または吸着特性の差異を表す場合の指標となる数値で、2～数1000まで変化する。

ゼオライトの構造には天然物、合成品を合わせて38種存在することが現在までに報告されている。その基本構成単位はSi（またはAl）を中心とするSiO₄（AlO₄）四面体（Fig.1）であり、これが環状に連結したもののがFig.2に示した第二次構成単位（SBU）である。全てのゼオライトはこれらの第二次構成単位が規則正しく三次元的に配列したものとみなすことができる。このような骨格Fig.1 Representation of SiO₄ or AlO₄ tetrahedron

(99)
Fig. 2 Secondary building units (SBU)—(a) single four-ring (S4R); (b) single six-ring (S6R); (c) single eight-ring (S8R); (d) double four-ring (D4R); (e) double six-ring (D6R); (f) complex 4-1 (T₄O₁₀ unit); (g) complex 5-1 (T₅O₁₈ unit); (h) complex 4-4-1 (T₁₀O₂₀ unit)

構造を構成することが、ゼオライトが大きな空洞や均一な細孔を形成する理由である。また AlO₄ 四面体は SiO₄ 四面体と異なり負の荷電を帯びているので、電気的中和を保持するアルカリ金属やアルカリ土類金属などの陽イオンを細孔や空洞内に保有している。したがってゼオライトの構造上の理解の為には結晶学的単位胞を表わす構造式 Mₓ[a(Al₂O₃)x(Si₂O₅)y]wH₂O を用いる方が便利である。(n は陽イオンMの原子価、(x+y) は単位胞に含まれる四面体の数、w/x は一般式における窒素比の 1/2 に相当、w は吸着水分子数を表わす) ゼオライトを化学組成の共通点で分類することの利点はあるものの、むしろ天然及び合成ゼオライト、さらには存在可能な骨格構造をも含めた骨格を基準とする SBU による分類が好ましい。Table 1にいくつかのゼオライトの分類例を示す。

Fig. 3 Structure of zeolites A, X and Y

た Fig. 3(a), (b) は D4R 及び D6R から成る A 及び X 型ゼオライトの構造を示す。

(2) 一般的特性

(1) 細孔容積

前記したような理由によりゼオライトは大きな空洞や細孔を有するが、その大きさは種々のガスの吸着量を測定することによって算出することが出来る。ところゼオライトの細孔率（ゼオライト結晶単位体積あたりの細孔容積: V₁）は骨格密度(1000Å³あたりに含まる SiO₄ または AlO₄ 四面体の数: df) と密接な関係があり、

<table>
<thead>
<tr>
<th>Group</th>
<th>Secondary Building Unit (SBU)</th>
<th>Zeolite</th>
<th>Typical Unit Cell Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Single 4-ring, S4R</td>
<td>Analcime</td>
<td>Na₁₆[Al₂O₁₆(Si₂O₅)₉₆]·16H₂O</td>
</tr>
<tr>
<td>2</td>
<td>Single 6-ring, S6R</td>
<td>Offretite</td>
<td>(K₂, Ca)₂₇[(Al₂O₃)₄(Si₂O₅)₁₁,₅]·15H₂O</td>
</tr>
<tr>
<td>3</td>
<td>Double 4-ring, D4R</td>
<td>A</td>
<td>Na₁₂[(Al₂O₃)₄(Si₂O₅)₂]·27H₂O</td>
</tr>
<tr>
<td>4</td>
<td>Double 6-ring, D6R</td>
<td>X</td>
<td>Na₉₆[(Al₂O₃)₄(Si₂O₅)₉₆]·264H₂O</td>
</tr>
<tr>
<td>5</td>
<td>Complex 4-1, T₄O₁₀ unit</td>
<td>Edingtonite</td>
<td>Ba₆[(Al₂O₃)₄(Si₂O₅)₆]·8H₂O</td>
</tr>
<tr>
<td>6</td>
<td>Complex 5-1, T₅O₁₈ unit</td>
<td>Mordenite</td>
<td>Na₉₄[(Al₂O₃)₄(Si₂O₅)₆]·24H₂O</td>
</tr>
<tr>
<td>7</td>
<td>Complex 4-4-1, T₁₀O₂₀ unit</td>
<td>Clinoptilolite</td>
<td>Na₈₄[(Al₂O₃)₄(Si₂O₅)₉₆]·24H₂O</td>
</tr>
</tbody>
</table>

(100)
ゼオライトの合成とその特性

Fig. 4 Relation between the measured void volume expressed as the void fraction \(V_r \) and the framework density, \(d \). The dashed line connects the points corresponding to \(V_r = 1.0 \) at \(d = 0 \) and \(V_r = 0 \) at \(d = 26 \). The line is therefore expressed by \(V_r = d/26 + 1 \).

Fig. 5 Distribution of pore sizes in microporous adsorbents. (a) Dehydrated zeolite, e. g., type A; (b) typical silica gel; (c) activated carbon

Table 2 Free dimension of n-rings

<table>
<thead>
<tr>
<th>(n)</th>
<th>(~ \times ~)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>(2.1)</td>
</tr>
<tr>
<td>8</td>
<td>(4.0)</td>
</tr>
<tr>
<td>10</td>
<td>(5.5)</td>
</tr>
<tr>
<td>12</td>
<td>(8.0)</td>
</tr>
</tbody>
</table>
(3) イオン交換特性
ゼオライトのイオン交換特性は、ゼオライトの骨格構造中の (AlO₄)⁴⁻ に起因する負電荷を電気的に中和する為に結合している陽イオンの存在に起因するものである。この陽イオンは容易に他の陽イオンと交換することが出来る。その理論的交換容量は単位重量あたりの AlO₄⁻ の量、すなわちゼオライトの SiO₂/Al₂O₃ 比によって決まる。ゼオライトのイオン交換機構は比較的簡単であるが、ゼオライトの種類によってイオンに対する選択性、交換容量が異なる事がイオン交換剤としての利用価値を高めている。特にナトリウムA型ゼオライトは Ca²⁺ イオンに対する交換容量及び選択性が高いばかりでなく、交換速度も十分速いことが合成洗剤用リューターとして使用される大きな理由である (Fig. 7)。
また、イオン交換機能のさらに重要な点は
a) イオン交換によって細孔径や選択吸着特性を変化させて吸着剤としての応用が拡大できること
b) プロトン型に交換したものは固体酸として作用するので固体酸触媒として利用できること
c) 分子レベルの均一な細孔を有するイオン交換型触媒または金属担持触媒として使用できることで、これを含むイオン交換剤としてより“特定のイオンと交換したものの”の方がはるかに利用価値が高い。
(4) 触媒特性
ゼオライト触媒の特性をその機能別に挙げると、
a) 固体酸機能
b) 分子状化選択機能
c) カチオン交換機能
d) 多孔質担体機能
の機能がある。これらの機能の発現はゼオライトのイオン交換機能と結晶であるが、その構造の均一性に因ると。

Fig. 7 Ion exchange rate of Toyobuilder for Ca²⁺

Fig. 8 (a)-Change in wavenumber of the hydroxyl vibrating in the large cavities as a function of Si/Al ratio. From left to right : A, GeX, Y, Y, chabazite, L, R, dealuminated Y, dealuminated Y, offretite, mordenite, clinoptilolite, dealuminated Y, dealuminated mordenite, ZSM-5.
(b)-Turnover number (N) at 100°C for isopropanol dehyration as a function of hydroxyl wavenumber.
ゼオライトの合成とその特性

a）の固体酸発現機構は上記のようなモデルで説明されている。すなわち、NH₄⁺ 交換型を加熱すると NH₃ が脱離して OH 基が形成される。これが Brønsted 酸点である。

これをさらに高温度で脱水すると脱水され、Lewis 硫酸点が形成される。従来はこのモデルにおける四配位の AI が Lewis 酸点であると考えられていたが、このような構造は特に水蒸気の存在する高温下においては必ずしも安定でなく、AI は格子外に外れて骨格が再構築されて生成するチオニン種が真の Lewis 酸点であるとの説も提案されている5,6)。

True Lewis sites

そこで固有の強度は SiO₂/Al₂O₃ 比が高い程強くなり、反応性も高くなると言われている（Fig. 3(a), (b)）。また SiO₂/Al₂O₃ 比が高い程耐熱性、耐酸性にも優れている。ハイシリカゼオライトの合成の価値はここにある。また c）は触媒反応の制御や改良に役立つ移動金属チオニン等をイオン交換に導入する事によるものである。b）はいずれかの方法でゼオライトに触媒作用を加えた上でさらに結晶構造の細孔の均一性を活用しようとするものである。また d）はイオン交換能と細孔の均一性を同時利用するものである。しかししながら現実の触媒反応において、これらの機能が複合の、相乗的に作用してい

3. ゼオライトの合成

地質学や鉱物学の分野におけるゼオライトの合成研究は19世紀後半まで遡るが、今日のゼオライト合成技術は1940年代以降、ゼオライト化学の創始者である R. M. Barrer によって始められた非平衡状態からの合成手

法を基礎となっている。このような手法によって現在までに合成されたゼオライトはその名称別に分類すると 200 に近い数に上るが、1978年までに公表されている構造種はわずか38種である7）。しかしながらこれらの構造は結晶学的に可能な構造種のわずか10％程度にすぎないという推算もあるので、前記した200種中のゼオライトも含めて新規構造ゼオライト合成の可能性はまだあると言える。

[1] 合成手法とその条件

含水アルミノ硅酸塩であるゼオライトはアルミナ源、シリカ源、アルカリ源及び水の混合物を密閉系で加熱する、いわゆる水熱合成によって得られる。工業的に有用なゼオライトのほとんどは非平衡系からの安定相として合成される。これらの系では平衡到達時間が比較的長いか、ほとんどの場合で結晶化時間が延長するとゼオライトが安定相へと転移する。その例を Fig. 9 に模式的に示す。

上記のように、非平衡系からの合成であるが故に、ある原料組成から出発した時に生成する結晶相とその経時変化、温度変化及び原料組成比を変えた場合の変化等を知ることがゼオライト合成研究の第一歩である。目的とするゼオライトが純粋に得られる生成領域その結晶化条件の決定は数多くの合成実験により初めて可能となる。

ゼオライト合成の基本的条件を挙げると次の通りである。

a）反応活性の高い原料を用いること

b）構造選択性の高い陽イオンを用いること
c）反応混合物の均一化を図ること
d）ゲルの過飽和度を高めて核発生を促進すること

原料混合物である水性ゲルは通常 200℃以下の温度、及びその温度での自生圧力下で結晶化される。約 100℃以上の温度を必要とする場合はオートクレーブが必要となる。反応時間は通常、数時間～数日間の範囲である。

Fig. 9 Crystallization curve of a zeolite and transformation to a stable phase.
東洋曹連研究報告 第29巻 第2号（1985）

図10 三角形図の組成の変化、反応性により生成する相を示す。SiO2/Al2O3 比の変化に伴って、生成ゼオライトの組成が変化する。

<table>
<thead>
<tr>
<th>Zeolite</th>
<th>Cations in reaction mixture</th>
<th>Preferred cations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faujasite type</td>
<td>Na, (Na, Li), (Na, Ba), (Na, NMe2)</td>
<td>Na</td>
</tr>
<tr>
<td>Zeolite A type</td>
<td>Na, (Na, K), (Na, Ba), (Na, NMe2), etc</td>
<td>Na, K, NMe2</td>
</tr>
<tr>
<td>Offretite type</td>
<td>(Na, Ba), (Na, K, NMe2), (Na, Ba, NMe2) etc</td>
<td>Na, alkaline earth ions</td>
</tr>
<tr>
<td>Mordenite</td>
<td>Na, Ca, Sr</td>
<td>K</td>
</tr>
<tr>
<td>Chabazite type</td>
<td>K, Sr, (K, Na), (K, Li), (K, Ba)</td>
<td>Ba</td>
</tr>
<tr>
<td>Zeolite L</td>
<td>(K, Na), K, Ba, (Ba, K), (Na, Ba)</td>
<td>Li</td>
</tr>
<tr>
<td>Ferrierite type</td>
<td>Sr</td>
<td></td>
</tr>
</tbody>
</table>
ゼオライトの合成とその特性

Table 4 Zeolite products of TSK

<table>
<thead>
<tr>
<th>Name</th>
<th>Grade</th>
<th>Zeolite type</th>
<th>Chemical composition*</th>
<th>Effective pore diameter (Å)</th>
<th>use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeolum</td>
<td>A−3</td>
<td>A</td>
<td>(Na, K₂O·Al₂O₃·2SiO₂</td>
<td>3</td>
<td>Adsorbent</td>
</tr>
<tr>
<td></td>
<td>A−4</td>
<td></td>
<td>Na₂O·Al₂O₃·2SiO₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A−5</td>
<td></td>
<td>(Na₂, Ca)O·Al₂O₃·2SiO₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F−9</td>
<td>X</td>
<td>Na₂O·Al₂O₃·2.5SiO₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toyobuilder</td>
<td>Powder Granule</td>
<td>A</td>
<td>Na₂O·Al₂O₃·2SiO₂</td>
<td>8</td>
<td>Detergent builder</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>Y</td>
<td>Na₂O·Al₂O₃·5～6SiO₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>Offretite/Erionite</td>
<td>(Na, K₂O·Al₂O₃·7SiO₂)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>L</td>
<td>K₂O·Al₂O₃·6SiO₂</td>
<td></td>
<td>Adsorbent Catalyst</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>Mordenite</td>
<td>Na₂O·Al₂O₃·20SiO₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>Ferrierite</td>
<td>(Na, K₂O·Al₂O₃·20SiO₂)</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

*Chemical composition is based on unhydrated base.

Fig. 11 Reactant composition diagram for Na-
Ferrierite and (K, Na)-Ferrierite at 180°C

じ型のゼオライトであっても、用途に応じて求められる
製品特性は異なり、SiO₂/Al₂O₃ 比や結晶形状、粒子径
など合成過程で決定される。これらの性質は、1つ1つのこ
れらの因子を組み合わせることによってコントロールされ
る。

さらにゼオライト成形体は合成された結晶粉末をもっと

に、そのゼオライトの持つ特性が最大限に発揮されるよ
うに、結合剤の選択をはじめ造粒、焼成等の過程を含む
成形技術によって完成される。

Table 4 に当社のゼオライト製品とその特性を示す。
尚、詳細な製品特性については各々のゼオライトについ
ての製品紹介14, 15, 16を参照されたい。

引用文献

1) D. W. Breck, Zeolite Molecular Sieves (1974)
2) D. W. Breck, and R. W. Grose, Molecular Sieves, ACS 121, 319 (1973)
3) T. Takeishi et al., JCS Faraday Trans. I, 71, 97 (1975)
4) 専修、八錯、高倉, 研究物理, 42, 851 (1973)
7) W. M. Meier and D. H. Olson, Atras of Zeolite Structure Types (1978)
8) 特開昭 59-54, 620
9) 〃 59-73, 421
10) 〃 59-73, 424
13) 〃 59-69, 419
14) 三浦, 辻内, 森下, 清沢, 東洋曹達研究報告, 21, (2), 89 (1977)
16) 板橋, 井川, 有家, 東洋曹達研究報告, 29, (1), 33 (1985)