Effects of ClO₅⁻ Ion on the Corrosion of Various Metallic Materials in Concentrated Caustic Soda Solutions
On the Corrosion of the High Class Metals

Masami Fujimoto
Kazutaka Sakiyama

A series of electrochemical tests and immersion tests on various metals were carried out to find the effects of ClO₅⁻ ion in about 47% caustic soda solutions containing varying amounts of NaClO₃ at 90°C. The results obtained were as follows. All the metals tested had a good corrosion resistance. The corrosion resistance of Nickel and Zirconium was, in particular, extremely high.

1. まえがき

さきに著者らはカセイソーダ製造装置材料の選定資料を得るため、カセイソーダ水溶液中で Fe の腐食におよぼす Cr, Ni, Mo および C の単独ならびに組み合わせ添加の影響を追求した 1)。続いて濃厚カセイソーダ溶液中におけるステンレス鋼の腐食におよぼす ClO₅⁻ イオンの影響 2)についての研究を行なった。本研究は、高純度金属 Ni, Mo, Zr および Ti について ClO₅⁻ イオンの影響を調べた結果である。

2. 試料および実験法

実験に用いた試料は Table 1 に示した金属 Ni, Mo, Zr および Ti 計 4 種である。すなわち, Ni はスエノンカセイ蒸発試用 International Nickel Co. 製 Ni チューブ, Mo は電解純 Mo, Zr は一般工業用純 Zr を、また Ti は工業用高純度 Ti を使用した。試験液は NaClO₃ 約 0.22 wt.% を含む隔膜電解法で製造した47%カセイソーダ液を母液として、これに試薬 1 級の NaClO₃ を溶解して所要濃度に調製したものを用いた。

液温は 90°C 一定である。高温でしか濃厚カセイソーダ溶液であるから、分極ならびに自然電極電位測定における照合電極には 1 N NaOH-H₂O 電極、浸没試験では耐酸性完全な Kel-F（三氯化二塩酸エチレン樹脂）を使用した。

3. 実験結果ならびに考察

(1) 実験 1 分極曲線

Fig. 1 は各種濃度の ClO₅⁻ イオンを含むカセイソーダ液中における Ni の分極曲線である。これによると、

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Chemical composition (％)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>Ni 99.4, C 0.06, Mn 0.25, Si 0.005, Fe 0.15</td>
</tr>
<tr>
<td>Mo</td>
<td>Electrolytic pure Mo</td>
</tr>
<tr>
<td>Zr</td>
<td>Zr > 99.6, Fe 0.050.10, C 0.01, N 0.0020.003, O 0.080.10, Hf 22.5, H --</td>
</tr>
<tr>
<td>Ti</td>
<td>Ti > 99.6, C 0.020.08, Si 0.020.1, Fe 0.020.13, O 0.010.1, N 0.01~0.03, H max. 100 ppm</td>
</tr>
</tbody>
</table>

* 1964年第11回腐食防食討論会仙台大会に発表、その1部は日本金属学会誌 Vol. 30, No. 7 (1966年) に掲載
Ni は、ClO$_3^-$ イオンを含む液中においても不働態化しやすく、陽極にしても活性溶解は見られない。さらに、電位を上昇して +0.5 V 付近から OH$^-$ イオンの放出による電流が急増するだけである。NaClO$_3$ 1%までの範囲内ではまったく活性溶解は見られないから分極曲線だけからでは ClO$_3^-$ イオンの影響は不明である。

(2) Mo
つぎに純 Mo の分極曲線は Fig. 2 に示すとおりである。Mo は、Ni と同様に不働態化しやすく、活性溶解は見られないが、その不働態化は狭く、不働態 Mo は多い電位、-0.5 V 付近から直接酸化で Mo$^{6+}$ イオンとして陽極的に溶解するので酸化作用が強く腐食を生じやすく、腐食は容易に予測される。また ClO$_3^-$ イオンが多くなるときに、電位から Mo$^{6+}$ イオンの溶解出の傾向を示す。

(3) Zr および Ti
Fig. 3 は、Zr および Ti の分極曲線をまとめて示したものである。濃厚アルカリ溶液中では、Zr および Ti はいずれも多少の酸化作用があり、表面に緻密な酸化被膜 ZrO$_2$ あるいは、TiO$_2$ を形成し、容易に不働態化する。図の分極特性からもわかるように陽極酸化状態にしても活性溶解は見られず、いずれも広範囲な不働態域を維持し陽極の溶解は極めて起こらない。このとき流れる電流は電流値スケールの関係上図には明示していないが、Zr の 20 〜 30 μA/cm2 以下の微小電流に比較すると、Ti の場合はわずかに高電流値 80 〜 90 μA/cm2 を示す。ただし Zr は高電位の +1.0 V 付近から電流の増加が認められ、かつ電流計指針ははげしく振れること。これにより Zr の陽極酸化が生じているものと思われる。したがって強酸性状態の環境における Zr の使用は注意すべきである。しかしそれ以外は、Zr は NaClO$_3$ として 1%範囲内の

![Fig. 1 Polarization curves for 99.4% Ni in 47% NaOH solutions containing varying amounts of NaClO$_3$ at 90°C.](image1)

![Fig. 2 Polarization curves for Mo.](image2)

![Fig. 3 Polarization curves for Zr and Ti.](image3)
CI0₃⁻イオンの存在する液中においては非常に耐食的であることがわかる。
また、Ti は約 +1.0V 以上の強酸性状態においても電流の増加は極めて少ない。したがって液中の CI0₃⁻イオン量によって耐食性に著しい影響はないものと思われる。Ti は還元性腐食環境中では腐食をうけやすいが、カセイ溶液中においてはある程度の酸化作用が加われば耐食性は著しく向上するものと考えられる。

[2] 実験II 自然電極電位の経時変化
自然電極電位の時間的変化を測定した結果の一例をFig. 4 に示す。実験は72時間行ったが50時間以後の変化は認められなかったので図示していない。なお図中の数字は NaClO₃（%）濃度である。

Ni の電位は約20時間前後急激に貴となる。すなわち不働態となる。したがって高い電位域で徐々に腐食が進行することがわかる。しかしながら Ni は液中の微量の不純物の相達により不働態化時間を著しく異なるので、図中 NaClO₃ 0.22% で非常に短時間が不働態化を示すのは母液中の不純物の影響が加わっており、その不働態化電位は一定しない。

Mo, Zr および Ti は特に CI0₃⁻イオンの著しい影響は自然電極の経時変化に現われないが、Ti では CI0₃⁻イオンが多量になると貴に貴電位に移行する。

[3] 実験III 浸漬腐食試験
これまで、分極試験ならびに自然電極電位の経時変化から CI0₃⁻イオンの影響を示した結果について述べたが、さらに実際の腐食におよぶすの挙動を知るため浸漬腐食試験を行った。その結果をFig. 5 にまとめて示す。図中 Ni および Zr の腐食量は小さいのでこじして、Mo および Ti の場合の腐食量がはるかに大きい値であるためスケールは縮小して示した。これから次のことわる。すなわち、
(1) Ni は、CI0₃⁻イオンが微量の中においては復極作用をうけやすく、さらに強い酸化作用が加わるとアルカリ液中では強固な酸化被膜形成のため腐食は抑制されて浸食され難しい。
(2) Mo は、CI0₃⁻イオンが増加すると復極作用により若し低下する。NaClO₃ 1.5% で腐食量は最大を示すが、これ以上さらに CI0₃⁻イオンが増加しても腐食速度にはあまり変化はない。
(3) Zr の浸漬試験結果は、適度の酸化作用の下ではすぐれた耐アルカリ性はさらに向上する。
(4) Ti は、CI0₃⁻イオンの微量存在によって腐食は促進されるが、CI0₃⁻イオンがある濃度以上に増加すると浸食されなくなる。

図中、30日間浸漬後の結果で腐食量の最高を示した NaClO₃ 0.22% を含む液中における Ti の浸食度は 0.018 mm/year、0.5% NaClO₃ の場合では 0.016 mm/year、その他はいずれも 0.01 mm/year 以下である。これに比較して、Zr の場合は、非常に低い浸食度である。

[4] 考察
塩素酸ソーダ添加量と腐食度（g/m²・30 days）との関係を明示するため前後を横軸、後者を縦軸にとりまとめ
で示したのがFig.6である。

前述の分極試験ならびに自然電極電位の時間的変化の結果などとあわせ考え、Niと共にZrがすぐれた耐食性材料である。Moは、ClO₃⁻イオンの影響をうけ酸化状態の系においては侵されやすく、次にTiはClO₃⁻イオンがある濃度以上ずなわち、酸化力がある程度以上加わってはじめて侵されなくなることは図からよく了解できる。また、濃厚カセイソーダ溶液中におけるTiの腐食度は他の純金属に比し大きい値を示すが、著者らはその後さらに100°～160°Cの高温度条件下でこれらの纯金属について腐食試験を行ないTiが最も侵されやすいという結果を得ている。

以上の実験結果を、ステンレス鋼に関するさきの研究結果の一部を再録したFig.7とを対照すると、高級純金属の腐食は鉄鋼およびステンレス鋼に比較し著しく小さいこと、ならびに各種金属のClO₃⁻イオン量による腐食挙動の相違が明瞭になる。

![Fig.7 Effects of NaClO₃ on the corrosion of mild steel, cast iron, and stainless steels.](image)

4. まとめ

濃厚カセイソーダ溶液中における高級金属材料特に金属Ni、Mo、ZrおよびTiの腐食に対するClO₃⁻イオンの影響を調べ次のような結果を得た。
(1) Niは、ClO₃⁻イオンが少量の液中においては複極作用のため腐食されやすく、さらにその量が増すと酸化作用が加わり侵され難くなる。
(2) Moは、ClO₃⁻イオンの存在によって侵されやすくなる。
(3) Zrは、Niと共にClO₃⁻イオンの存在する液中においてすぐれた耐食性を有し、特にZrは酸度の酸化作用の下では耐アルカリ性はさらに向上する。
(4) Tiは、ClO₃⁻イオンが微量存在する液中では腐食はわずかに増加するが、ClO₃⁻イオンがある程度以上になると侵されなくなる。
文献

1）崎山, 藤本：“東洋曹達研究報告”, 3, [1], 2 (1959)
崎山, 藤本； 同 誌, 3, [2], 14 (1959)
崎山, 藤本； 同 誌, 3, [2], 20 (1959)
崎山, 藤本； 同 誌, 5, [2], 64 (1961)
崎山, 藤本； 同 誌, 6, [2], 50 (1962)
崎山, 藤本； 同 誌, 7, [1], 2 (1963)
崎山, 藤本； 同 誌, 7, [1], 7 (1963)
崎山, 藤本； 同 誌, 7, [2], 78 (1963)
崎山, 藤本； 同 誌, 7, [2], 81 (1963)
崎山, 藤本； 同 誌, 8, [1], 3 (1964)
崎山, 藤本； 同 誌, 8, [1], 6 (1964)
崎山, 藤本； 同 誌, 30, 617 (1966)
崎山, 藤本； 同 誌, 24, 680 (1960)

総括は崎山学位論文第3篇。