Polymer blends was made by mixing high density polyethylene with isotactic polybutene-1. Apparent viscosity of the polymer blends in the molten state was measured using a parallel plate plastometer. The relations between the viscosity and the composition of the blends was studied by using Takayanagi's model.

The activation energy of the melt flow was also calculated. The results of the studies shows:

1. The apparent melt viscosity of the blends conforms to Takayanagi's model, i.e. it is shown by the parallel model in the region of less amount of polyethylene, while it approaches the series model in the region over 0.3 of the volume fraction of polyethylene.

2. The melt viscosity of the blends was found to satisfy Andrade's equation within the temperature range of 143~182°C, and the activation energy of the viscous flow was found to be 8.5~12.1 Kcal/mol.

1. まえがき

前報1）でのべたように、ポリオレフィンブレンド系の溶融粘度は厳密には混合組成の対数平均では示されなかった。この原因として混合ポリマーの相溶性、混合模型あるいはentanglement などが混合組成とともに変化することを予測した。

本報ではポリオレフィンを主体とした混合系のうち、高密度ポリエチレンとアイソタックチックポリプロピレン－1との混合系について、平行板プラストメーターにより低せん断速度領域すなわちニュートン流体域での溶融粘度を求めた。そして、高柳の高分子混合系の理論2）から規格を考え、溶融粘度と混合組成比の関係より、その混合模型について検討した。

2. 実験方法

[1] 試料調製

試料として用いた高密度ポリエチレンおよびアイソタックチックポリプロピレン－1の性状は前報1）に示した。この両者を一定の組成に混ぜ、4相×8相ミキシングロールで 150°C、20分間混練を行ない、次いで160°C、150kg/cm²、10分間の条件のもとで厚さ2mmの
金型を用いて成形した。ポリエチレンとポリステレン
1の組成比はポリエチレンの重量分率で 1.0, 0.8,
0.6, 0.4, 0.2, 0 の 6 つをとりあげた。

[2] 装置

装置は東洋精機製の平行板プラスチットメーターを使用
した。二枚の金型板の間に試料を挿入して溶融粘度を測
定する装置を図1に示した。

図1 平行板プラスチットメーター
①平行板 ②目盛板 ③指針 ④配電盤
⑤バイメタル ⑥ダイヤルゲージ
⑦荷重 ⑧荷重レバー ⑨温度計
⑩懸垂用プロペラカバー

(3) 様式

(1) 1/h² = (4F/3πa³) · 1/η + c ……… (1)

ただし

h : 時間 (sec)
F : 荷重 (dyne)
a : 平行板の半径 (cm)
η : 溶融粘度 (poise)
c : t = 0 のときの 1/h² の値

したがって、溶融粘度を求めるためには 1/h² と t と
の関係図を描き、直線部の勾配mから(1)式より η を
算出することができる。

m = (4F/3πa³) · 1/η ……… (2)

ことに

F = 980 × W (g·cm/sec²)
W = 2.0 × 10³ (g)
a = 2.5 (cm)

であるから(2)に代入して

η = (2.12 × 10⁻⁴) m ……… (3)

となる。ただし m は勾配 (1/sec·cm²)

以下、溶融粘度は式(3)より求めた。

試料をセロファンではさんだ理由は、試料が平行板
に粘着を防ぐことをと、板上に正しく置きえいた
ためである。セロファンの代わりに Al 箔、紙包紙で行な
っても同様の結果が得られた。

測定温度は 143°C, 161°C, 182°C の 3 点をとっ
た。

3. 実験結果および考察

(1) 厚さの時間的変化

1/h² の時間的変化の一例を表1に示した。

これらの表より、横軸に 1/h² を、縦軸に t をとり
グラフに描き、小出の方法にしたがい四要素模型
を考え、グラフの直線部分が粘性変形にあずかるとし
て勾配 m を求め、この m を(3)式に代入して溶融粘度 η を
算出した。この方法の矛盾について荒井らにより
報告されているが、現在なお不明な点が多く、ここ
では直線部分がニュートン流であるとして解析した。

したがってここで求めた溶融粘度 η は平行板プラス
チットメーターで測定したものかの溶融粘度を意味して
いる。

(2) 溶融粘度と混合組成の関係

(1) で求めた勾配 m および溶融粘度 η を表2に
示した。

高分子混合物の粘度は原田により、対数平均の
式が成立すると報告されている。ポリエチレン-ポリ
ステレンの混合体の溶融粘度 m は、ポリエチレンお
表1 1/\(h^2\)の時間的変化（温度161°C）

t (sec)	1/\(h^2\) (cm⁻²)	PE E PE E80 PE E60 PE E40 PE E20 PE PB				
0	22.3	19.5	21.3	21.3	18.2	21.4
30	31.6	25.3	22.8	20.3		
40	33.8					
50	35.9					
60	37.8					
80	41.9					
100	46.0		31.9	26.7	21.9	
120	49.6	38.3	33.8	27.6	22.4	26.2
150	55.7	42.4		29.1	22.8	26.5
180	61.0	46.2	39.1	30.4	23.4	27.1
210	67.2	50.3				
240	73.1	54.0	44.5	33.1	24.5	27.9
300	85.0	61.5	49.6	35.6	25.5	28.7
360		69.4	54.5	38.1	26.5	29.5
420	108	77.6	59.6	40.8		
480	119	85.7	65.0	43.3	28.6	30.9
540			46.0	35.5		
600	144	102	75.7	30.5	32.5	
720	169	119	85.7	32.5	33.8	
840		135	97.0	34.5		
1020	207	159	112	68.2	37.2	
1200	272	185	130	77.6	40.1	39.3
1380		210	146	87.4	43.0	
1560		240	164	97.0	45.7	
1800	416	279	188	110	49.6	

表2 勾配と溶融粘度

<table>
<thead>
<tr>
<th>温度</th>
<th>ポリエチレン勾配</th>
<th>溶融粘度η</th>
</tr>
</thead>
<tbody>
<tr>
<td>143</td>
<td>1.0</td>
<td>1.08 × 10⁵</td>
</tr>
<tr>
<td>161</td>
<td>0.8</td>
<td>1.58 × 10⁵</td>
</tr>
<tr>
<td>182</td>
<td>0.6</td>
<td>2.47 × 10⁵</td>
</tr>
</tbody>
</table>

図2 溶融粘度と混合組成

よびポリブテン1の粘度をそれぞれ\(\eta_m\), \(\eta_e\), ポリエチレンの容量分率を\(\phi\)とすれば

\[
\log \eta_m = \phi \log \eta_e + (1 - \phi) \log \eta_b \cdots \cdots (4)
\]

の式が成立するのはあるが、実際には\(\log \eta_m\)と\(\phi\)の間には直線関係が成立立つとは図2のような曲線となる。

そこで白木ら22が行なった方法で高柳22の混合理論により考察した。この混合理論によると二種の分子の混合状態の極端な場合としてシリーズ混合とパラレル混合との2種があり、それぞれ図3、図4に示した。

図3の(1)でシリーズ混合系では応力方向に対してEとBとが交互に働く場合で、この状態に対するモデルとしては図3(2)のようになる。

図4(1)のパラレル混合系ではEとBが別々に応力方向に連続している状態で、この状態のモデルとしては図4(2)のようになる。

(9)
図3 シリーズ混合モデル
B: PB-1 成分 E: PE 成分

図4 パラレル混合モデル
E: PE 成分 B: PB-1 成分

この両者のモデルから混合体の溶融粘度ηₘは次式で与えられる。

シリーズ系
\[ηₘ = \frac{1}{(1-\phi)/η_b + \phi/η_e} \] …… (5)

パラレル系
\[ηₘ = (1-\psi)η_b + \psiη_e \] …… (6)

(5), (6)式を用いてポリエチレン-ポリブレーン-1系につきηₘを計算した結果のうち、161°Cのものを図5に示した。図2でわかるように3つの曲線は同じ傾向を示しているので、以下161°Cのものについて検討する。

図5よりポリエチレンにポリブレーン-1をわずかに混合したときはシリーズ系をとり、ポリブレーン-1にポリエチレンを混合したときはパラレル系をとることがわかる。したがって、シリーズ系とパラレル系を同時に含むような模型を用いないと説明できない。そこで図6の模型を考える。

図6において、ψはパラレル系部分の容積分率、λはパラレル系部分のうのポリブレーン-1の容積分率で、\(\lambda \psi \)はポリブレーン-1の容積分率1-\phiにひらしく、\(\lambda \)あるいは\(\psi \)はBの形状係数に対応する。この模型の溶融粘度ηₘ (7)式で表わされる。

\[ηₘ = \left[\frac{\psi}{\lambda \psi η_b + (1-\lambda) \psi η_e} + \frac{1-\psi}{\eta_e} \right]^{-1} \] …… (7)

また、\(\lambda \), \(\psi \)とポリエチレンの容量分率の間には次の関係がある。

\[\lambda \psi = 1-\phi \] \(\therefore \phi = 1-\lambda \psi \) …… (8)

\(\lambda \)あるいは\(\psi \)を一定にして(7), (8)式よりηₘと\(\phi \)との関係を求め、図示すると図7のようになる。
図7 複合模型の溶融粘度

図7から、実測値はφの0近傍ではパラレル系を示し、φがほぼ0.3以上になるとλ=0.7の曲線に近くすることがわかる。すなわち、φ=0.3以上ではパラレル系とパラレル系のポリブテン-1の含有率が常に0.7の一定値をとる。このときのλはφと(8)式よりφ=1-0.7φの関係があり、1より0まで変化し、シリーズ系部分をなす割合を示している。

この溶融状態におけるブレンド体は、φが0.3附近で変化形態に大きな変化があるとはわからないが、[3]流れの活性化エネルギー

高分子混合法の溶融粘度ηmの温度係数をしらべるために組成の異なるものについてそれぞれlog ηmと1/τ(“k”)との関係をかいてみると、図8のようにになった。

ポリエチレン単独のものを除けばほとんど直線となり、143℃〜182℃の範囲ではいわゆるAndradeの式(9)が成立する。

表3 ポリエチレン・ポリブテン-1系混合体の粘性流れた活性化エネルギー

<table>
<thead>
<tr>
<th>ポリエチレン組成（wt％）</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>E (Kcal/mole)</td>
<td>12.1</td>
<td>11.9</td>
<td>11.1</td>
<td>9.19</td>
<td>8.77</td>
<td>8.55</td>
</tr>
</tbody>
</table>

Andradeの式

\[E = A \exp \frac{W}{\tau} \cdots \cdots \cdots (9) \]

ここにEは粘性流れた活性化エネルギー

図8より直線の勾配を求めこれより流れた活性化エネルギーE (Kcal/mol)を計算した値を表3に示した。

高密度ポリエチレンの活性化エネルギーは6.5〜7.5 Kcal/molと知られているが、一般に分子量や分子量が大きくなるとともに大きくなるので正確には比較し難い。

一方ポリブテン-1については、従来報告がないがSchott[9]によると-[-C==C-]の塩の炭化水素

\[\log E = 0.784 + 0.0080 V_{X+Y} \cdots \cdots (10) \]

V_{X+Y}: 二つの置換基X,Yの沸点におけるモル体
積の合計。
いま H 原子のモル体積を 3.7mℓ, C 原子のそれを 14.8mℓ とす ると \(V_x + y = 51.8mℓ \) となり \(\Delta E = 12.4 \text{ Kcal/mol} \) をうる。この値は実測値とよく一致し、妥当な値と考えられる。
また表 3 の値を図示すると図 9 のようになる。この場合と同じである。流れの活性化エネルギーと混合様式の関係はほとんど研究されておらず、現象論的に説明もつけられないが、詳細については別に考察したい。

4. むすび
ポリエチレン・ポリプロピレン系混合体の溶融粘度を平行板ブ ラスマーターを用いて一定割合 2 kgのもとで温度をかえ測定した。
この系の混合体の溶融粘度は高分子の混合モデルでよく説明される。すなわち、ポリエチレンの非常に少ないときはパラレル系の挙動を容量分率 0.3 以上では \(x = 0.7 \) となり、パラレル系部分の組成を一定にし、しかもシリーズ系の挙動を示す。
また、混合体の溶融粘度は 143−182℃の範囲で各組成ごとに Andrade の関係式が成立し、その活性化エネルギーは 8.5−12.1 Kcal/mol の間にあった。

文献
(1) 江村, 松村, 小坂: 東洋薬品 8, 68 (1964)
(2) 白木, 關本: 工化, 65, 444 (1962)
(3) 高柳, 針間, 岩田: 材料, 12, 389 (1963)
(5) 小出, 久保田, 高橋: 日本ゴム協会誌 24, 1 (1951)
(6) 荒井, 中久他: 工化, 63, 427 (1960)
(7) 野原: 高分子化学 12, 527, 542 (1965)
(9) H. Schott: J. Appl. Polymer Sci., 6, S29 (1962)
(10) S. Glasstone; The elements of physical chemistry p. 147 (1954), Maruzen.