イットリア安定化ジルコニアの焼結メカニズム: イットリウムイオン(Ⅲ)の粒界偏析効果

松 井 光 二*1

Sintering mechanism in yttria-stabilized zirconia : grain-boundary-segregation effect of yttrium (III) ions

Koji MATSUI

Microstructural developments during sintering in 2 and 3 mol% Y_2O_3 -stabilized tetragonal ZrO₂ polycrystals (2Y- and 3Y-TZPs) and 8 mol% Y_2O_3 -stabilized cubic stabilized ZrO₂ (8Y-CSZ) were systematically investigated in the sintering temperature range of 1100-1500°C. In particular, grain-boundary segregation and grain-interior distribution of Y³⁺ ions were examined by high-resolution transmission electron microscopy- and scanning transmission electron microscopy-nanoprobe X-ray energy dispersive spectroscopy techniques. Above 1200°C, grain growth during sintering in 8Y-CSZ was much faster than that in 2Y- and 3Y-TZPs. In the grain-boundary faces in these specimens, no amorphous or second phase is present, but Y³⁺ ions segregated at the grain boundaries over a width of about 10 nm. The amount of segregated Y³⁺ ions in 8Y-CSZ was significantly less than in 2Y- and 3Y-TZPs. This indicates that the amount of segregated Y³⁺ ions is related to grain-growth behavior; i.e., an increase in segregated Y³⁺ ions retards grain growth. Therefore, grain-growth behavior during sintering can be reasonably explained by the solute-drag mechanism of Y³⁺ ions segregating along the grain boundary. The segregation of Y³⁺ ions, which directly affects grain growth, is closely related to the driving force for grain boundary.

1. 緒 言

 Y_2O_3 安定化正方晶ZrO₂多結晶体(Y-TZP:Yttria-Stabilized Tetragonal Zirconia Polycrystal)は、常温力 学特性に優れており、光ファイバー用接続部品,粉砕 ボール,歯科材料,産業機器材料等で実用化されてい る。一方、 Y_2O_3 安定化立方晶ZrO₂(Y-CSZ:Yttria-Stabilized Cubic Stabilized Zirconia)は、優れた酸素 イオン伝導性を発現するために燃料電池の固体電解質 の候補材料として研究されている。これらの特性は、 Y_2O_3 安定化ZrO₂(YSZ:Yttria-Stabilized Zirconia)の 微細組織と相安定性に強く依存しており、YSZの特性 を向上させるためには、焼結過程での微細組織の制御 が重要となる。

これまで、YSZの焼結過程での微細組織の形成メカ

ニズムは、 広範囲に渡って研究されてきている1)-17)。 例えば、Y-TZPの結晶粒子の成長は、溶質ドラッグと Zenerのピン止め効果で説明されている。LeeとChen は、8 mol% Y-CSZに比べて2mol% Y-TZPの粒成長が 遅いことを報告しており、その要因は粒界アモルファ ス相が直接関与する溶質ドラッグ効果で考察している2)。 しかしながら、彼らは、粒界アモルファス相の実験的 証拠は示していない²⁾。Zenerのピン止めモデルは、 Lange³⁾、佐久間と吉澤^{4),5)}によって提案されている。 佐久間と吉澤は、平衡分配によって形成される正方晶 (T) 及び立方晶(C)の結晶粒子からなる二相混合組 織モデル(Fig.1(a))をベースに粒成長挙動を速度 論的に解析しており、Y-TZPの粒成長がY-CSZよりも 遅くなる要因を、マイナー相のC相粒子が粒界移動を ピン止めすることによって引き起こしていると説明し ている4),5)。

Fig. 1 Microstructure models in Y-TZP^{15),16)}. (a) is the T-C dual-phase structure; The white and gray grains represent the tetragonal and cubic phases, respectively. (b) is the T-C dual-phase grain structure; The gray parts of the grain-boundary indicate segregation of Y³⁺ ions, and the white and gray regions of grain interior represent the tetragonal and cubic phases, respectively.

結晶粒界のキャラクタリゼーションは、焼結過程で の微細組織形成メカニズムを解明するためのキーとな る。YSZの粒界構造は、高分解能透過電子顕微鏡 (HRTEM)法により数多くの結果が報告されている⁶⁾⁻¹³⁾。 幾原らは、HRTEM-ナノプローブエネルギー分散X線 分光(EDS)法で2.5 mol% Y-TZPの粒界構造を詳細に 調べ、粒界にはアモルファス相は存在せず、Y³⁺が4~ 6nmの幅で粒界に固溶偏析していることを明らかにし た¹²⁾。この事実は、粒界アモルファス相をベースにし た粒成長仮説を見直す必要があることを意味する。一 方、Y-CSZの粒界構造に関しては、TekeliとDaviesが 報告しており、8 mol% Y-CSZの粒界ではY₂O₃の偏析 はなく、粒界近傍のY₂O₃濃度は、3 mol% Y-TZPより も大幅に低いことを示している¹³⁾。

既報で、著者は、HRTEM-及び走査型透過電子顕 微鏡(STEM)-ナノプローブEDS法を用いて焼結過程 で形成される3 mol% Y-TZPの微細組織を詳細に調べ、 C相生成メカニズムとして粒界偏析誘起相変態 (GBSIPT: Grain Boundary Segregation-Induced Phase Transformation)を提案した¹⁴⁾⁻¹⁶⁾。GBSIPTメ カニズムによれば、C相領域は、Y³⁺が偏析している粒 界及び/又は三重点を起点に粒界に隣接した粒子内部 に形成される(Fig. 1(b))。このようなT-C二相粒子 構造からなる微細組織が形成されると、二相混合組織 モデルをベースとしたZenerのピン止め効果で粒成長 メカニズムを合理的に理解することはできない。

このように3 mol% Y-TZPの焼結過程で形成される 微細組織は、GBSIPTメカニズムで理解できることを 明らかにしたが、Y₂O₃濃度の異なる2 mol% Y-TZPと8 mol% Y-CSZの焼結過程での微細組織変化については 研究されていない。YSZの焼結過程でのT→C拡散相 変態と粒成長メカニズムを系統的に理解するために は、Y₂O₃の広い組成領域での微細組織変化を明らかに することが必要である。

本研究では、YSZの焼結過程でのT→C拡散相変態 及び粒成長メカニズムを明らかにするため、1100~ 1500℃で焼結させた2 mol% Y-TZP, 3 mol% Y-TZP及 び8mol% Y-CSZの結晶粒界と結晶粒子内部の微細組織 をHRTEM-及びSTEM-ナノプローブEDS法を用いて 系統的に調べた。得られた結果をもとに、2~8 mol% YSZの焼結過程でのT→C拡散相変態と粒成長メカニ ズムについて考察した。

2. 実験方法

[1] 焼結体の作製

加水分解法で製造された2mol% Y-TZP, 3 mol% Y-TZP及び8 mol% Y-CSZ粉末(東ソー製, TZ-2Y, TZ-3Y及びTZ-8Yグレード)を出発粉末に用いた。これら の粉末を70 MPaの成形圧でプレス成形して、得られ た成形体を1100~1500℃の温度で、大気中、2h焼成 することによって焼結体を作製した。以後、TZ-2Y, TZ-3Y及びTZ-8Yグレード粉末から得られた各々の焼 結体は、それぞれ2Y, 3Y及び8Yと表記する。

[2] 密度と結晶粒径の測定

焼結体の密度は、アルキメデス法で求めた。相対密 度が80%以下の場合には、焼結体の重量と体積を測定 して密度を算出した。焼結体の結晶粒子の平均粒径は、 電解放射型走査電子顕微鏡(SEM;日立製作所製, S-4500)を用いて測定した。SEM測定用試料は、3µ mのダイヤモンドペーストで鏡面研磨し、焼結温度よ りも50℃低い温度で1h熱エッチング処理したものを 用いた。結晶粒子の平均粒径は、プラニメトリック法 で見積った¹⁸⁾。1100℃で焼結させた試料は、ポーラス であり、多くの気孔が観察されたため、平均粒径は 各々の粒子の直径を測定することにより求めた。

[3] XRD測定

X線回折 (XRD;マックサイエンス社製, MXP³) 測定は、Cu K α 線を40 kV-30 mAで励起させ、スリット幅1[°]の条件で、室温で測定した。焼結体のC相 (f_c), T相 (f_T),単斜晶 (M; f_M)の分率 (mass%)は、リートベルト法で求めた。リートベルト計算は、大道ら¹⁷⁾の計算方法と同様の条件で行った。

[4] TEM-ナノプローブEDS測定

焼結体の微細組織は、電界放射型透過電子顕微鏡 (TEM;トプコン社製,002BF)を用いて観察した。 TEM測定用試料は、約0.1 mmの厚みになるまで機械 研磨を行い、ディンプラーを用いて試料中央部の厚み を約10 μ mとし、次いでイオンミリング法で薄片化処 理したものを用いた。HRTEM観察は、粒界構造を調 べるために、0.17 nmの点分解能を有するTEM(トプ コン社製,002BF)を用いて行った。ナノプローブ EDS測定は、0.5 nm ϕ のプローブ径を有するTEMの Noran Voyagerシステム(Noran Instruments社製)を 用いて、粒界でのY³⁺の偏析を定量的に調べるために 行った。1試料に対して、3~5箇所の粒界を測定した。 STEM-ナノプローブEDS元素マッピング測定は、 TEMのNoran Voyagerシステムを用い、1 nmØのプロ ーブ径で結晶粒子の内部でのY³⁺分布を調べるために 行った。

3. 結 果

[1] 緻密化, 粒成長及び結晶相の解析

Fig. 2 に、1100~1500℃で焼結させた2Y,3Y及び 8Yの相対密度と焼結温度の関係を示す。2Y及び3Yの 相対密度は、1300℃以下の温度でほぼ同様の挙動を示 したが、1300℃を超えると、3Yの密度は2Yよりも高 くなった。8Yの相対密度は、1250℃以下では2Y及び 3Yよりも低く、1250℃を超えると高くなった。Fig. 3

Fig. 2 Temperature dependence of relative density and average grain size for 2Ys, 3Ys, and 8Ys: (●), (▲), and (■) relative densities of 2Y, 3Y, and 8Y; (○), (△), and (□) average grain sizes of 2Y, 3Y, and 8Y.

Fig. 3 SEM images in (a) 2Y, (b) 3Y, and (c) 8Y sintered at 1500°C.

に、1500℃で焼結させた2Y,3Y及び8YのSEM像を示 す。8Yの結晶粒径は、2Y及び3Yよりも著しく大きく なっていることが分かる。2Y,3Y及び8Yの結晶粒径 と焼結温度の関係を定量的に調べるために、2Y,3Y 及び8Yの平均結晶粒径を求めた(Fig.2)。2Y及び3Y の平均結晶粒径は、焼結温度の増加に伴ってほぼ同様 の挙動で増大し、一方、8Yの平均結晶粒径は1200℃ を超えると2Y及び3Yよりも急激に大きくなることが 分かった。

次に、2Y,3Y及び8Yの結晶相と焼結温度の関係を 調べるために、XRD測定とリートベルト解析を行っ た。Fig.4に、1300~1500℃で焼結させた2Y,3Y及び $8YO_{f_c}, f_T 及び_f_M の値と焼結温度の関係を示す。2Yの$ C相は、1300℃で生成しており、その値はf_c=6.8 mass%であった。fcは、この温度範囲でほぼ一定であ り、焼結温度はC相の生成メカニズムに影響を及ぼさ ないことが分かった。一方、2Yのfrは、C相の挙動と は異なり焼結温度の増加に伴って減少した。2Yのf_Mは、 焼結温度の増加に伴って増大しており、この挙動は、 M相の生成がfrの減少に関与していることを示してい る。ZrO₂-Y₂O₃系の状態図¹⁹⁾ によれば、2mol% Y-TZP の結晶相は、本実験の温度範囲でT-C二相として存在 する。故に、観測されたM相は、焼結プロファイルの 冷却段階でT→M無拡散相変態によって形成されたも のであると結論される。この結論は、焼結時の高温領 域に存在する2Yの結晶相は、T-C二相であることを示 唆している。3Yについては、この温度範囲でM相は 観測されなかった。3YのC相は、1300℃でf_c=10.4 mass%であり、2Yのfc (=6.8 mass%) よりも大きくな った。3Yのfcは、焼結温度の増加に伴って増大し、 1500℃でfc=17.0 mass%に到達した。一方、3Yのfrは、 焼結温度の増加に伴って減少しており、このC相の生 成挙動は、T→C拡散相変態によって形成されたC相と

して理解される。3Yの場合、T相のY₂O₃濃度^{14),17)}は 2Yよりも高く、2Yよりも安定なT相となるので、焼結 の冷却段階でT→M無拡散相変態が起こらなかったも のと考えられる。8Yの結晶相については、1300~ 1500℃の範囲でC相単相(*f*c=100 mass%)であった。

[2] 結晶粒内の解析

T→C拡散相変態と粒成長に伴う微細組織の変化を 詳細に調べるために、STEM-ナノプローブEDS元素 マッピング法を用いて、2Y,3Y及び8Yの結晶粒子の 内部でのY³⁺分布を調べた。Fig.5に、1300(a,c,e) 及び1500℃(b,d,f)で焼結させた2Y,3Y及び8Yの STEM像とY-Ka及びZr-Kaマッピング像をそれぞれ 示す。1300℃で焼結させた2YのY-Kaマップ(a)で は、結晶粒内のY³⁺分布はほぼ均一である。1500℃ (Y-Kaマップ(b))では、高Y³⁺濃度の極狭い領域が 粒界及び三重点近傍で観察されたものの、全体的に、 結晶粒内のY³⁺分布はほぼ均一であった。Zr-Kaマッ プ(a,b)も、Zr⁴⁺が均一に分布しており、上記のY-Ka マップの結果と一致する。故に、2Yの結晶粒子のほ とんどは、焼結中、T相で存在していると考えられる。

1300℃で焼結させた3Y(Y-Kαマップ(c))では、 結晶粒内のY³⁺分布はほぼ均一であり、ほとんどの結 晶粒子はT相である。1500℃(Y-Kαマップ(d))で は、Y³⁺濃度の高い領域が粒界に隣接した結晶粒子の 内部に観察された。 f_c は、焼結温度の増加とともに増 大するので(Fig. 4)、結晶粒内でのY³⁺濃度の高い領 域は、T→C拡散相変態によって形成されたC相である。 このようにSTEM-ナノプローブEDSマップは、結晶 粒内に形成されたY³⁺濃度の高い領域がT→C拡散相変 態していることを示しており、この考察から類推する と、2YのY-Kαマップ(b)で観察された粒界や三重 点近傍の極狭い高Y³⁺濃度領域もC相であると推定され

Fig. 4 Dependence of the fractions of cubic, tetragonal, and monoclinic phases in 2Y, 3Y, and 8Y with sintering temperature.

Fig. 5 STEM images, and Y-K α and Zr-K α mapping images by STEM-nanoprobe EDS method, in 2Ys, 3Ys, and 8Ys sintered at 1300° and 1500°C: (a) 2Y-1300°C, (b) 2Y-1500°C, (c) 3Y-1300°C, (d) 3Y-1500°C, (e) 8Y-1300°C, (f) 8Y-1500°C. The white broken lines in the mapping images indicate the grain boundaries. Bright parts in the Y-K α mapping images correspond to regions with high Y³⁺ ion concentrations.

る。

一方、1300 (e) 及び1500℃ (f) で焼結させた8Yの Y-Kαマップは、残留気孔を除いてZr⁴⁺分布 (e, f) と 同様に均一なY³⁺分布を示した。この観察から8Yの結 晶粒子はC相から構成されており、結晶粒内のY³⁺分布 は均一であることが分かった。

[3] 結晶粒界の解析

粒界近傍でのY³⁺分布を調べるために、局所領域を 解析するのに極めて有効なHRTEM-ナノプローブ EDS法を用いて、2Y, 3Y及び8Yの粒界構造と粒界近 傍でのY濃度を測定した。Fig. 6 に、1300 (a, c, e)及 び1500℃ (b, d, f) で焼結させた2Y, 3Y及び8Yの TEM像を示す。全ての試料で、粒界面はストレート であり、結晶粒のコーナーは角張っている。Fig. 7 に、 1300 (a, c, e)及び1500℃ (b, d, f) で焼結させた2Y, 3Y及び8Yの粒界面のHRTEM像を示す。粒界構造を直 接観察するために、粒界を電子線に対して平行に設定 (edge-on条件)して測定した。Fig. 7 (a~f)の HRTEM像では、粒界面にアモルファスや第2相は観 察されず、これまでに報告されている結果^{12),15),16),20),21)} と一致した。

Fig. 8に、1300 (a, c, e)及び1500 $^{\circ}$ (b, d, f)で焼結させた2Y,3Y及び8Yの粒界近傍でのY濃度プロファイルを示す。ナノプローブEDS測定は、0.5 nm ϕ のプローブ径で粒界近傍を1 nm間隔で行った。1300 $^{\circ}$ で焼結させた2Yの粒界で、Y³⁺の偏析は明瞭に観測された。1500 $^{\circ}$ で焼結させた2YのX³⁺偏析ピークは、1300 $^{\circ}$ で焼結させたものよりも高くなった。1300及び1500 $^{\circ}$ で焼結させた2Yの結晶粒内のY₂O₃濃度は1~3mol%であり、この範囲はT相のY₂O₃濃度に対応する。

このことから、T相粒子間の全ての粒界(T-T粒界) で、Y³⁺が約10nm以下の幅で偏析していることが分か った。

2Yのリートベルト解析によれば、1300℃でC相はす でに生成しており(Fig. 4)、このC相は、Y³⁺が偏析 している粒界近傍でのT→C相変態で形成されている と推定される。この可能性を調べるために、結晶粒子 が直径Dの球であり、かつ、Y³⁺が偏析している粒界近 傍の結晶構造をC相と仮定した結晶粒子モデル^{15),16)}を 用いてC相率(f_c)を見積った。 f_c の計算値は、(1) 式で求めることができる^{15),16)}。

$$f_{\rm c}'(mass\%) \cong \frac{{\rm D}^3 - ({\rm D} - \omega)^3}{{\rm D}^3} \times 100$$
 (1)

ここで、 ω は、 Y^{3+} の偏析幅である。(1)式に1300℃で の平均結晶粒径(**Fig. 2**よりD \cong 0.15 μ m (150 nm)) と偏析幅(**Fig. 8**(a)より $\omega\cong$ 3 nm)の値を代入す ると、 $f_c'\cong$ 5.9 mass%となり、この値はリートベルト 解析で求めた f_c の値(=6.8 mass%)とほぼ等しくなっ た。このことから、1300℃では、 Y^{3+} が偏析している ほとんどの粒界でT→C拡散相変態していることが分

Fig. 6 Conventional bright-field TEM images in 2Ys, 3Ys and 8Ys sintered at 1300° and 1500°C: (a) 2Y-1300°C, (b) 2Y-1500°C, (c) 3Y-1300°C, (d) 3Y-1500°C, (e) 8Y-1300°C, (f) 8Y-1500°C.

Fig. 7 HRTEM images of the grain-boundary faces in 2Ys, 3Ys and 8Ys sintered at 1300° and 1500°C: (a) 2Y-1300°C, (b) 2Y-1500°C, (c) 3Y-1300°C, (d) 3Y-1500°C, (e) 8Y-1300°C, (f) 8Y-1500°C.

かった。

1300及び1500℃で焼結させた3Y(c, d)では、2Yの 偏析挙動と同様に、Y³⁺の偏析ピークは1300℃で明瞭 に観測され、焼結温度の増加に伴ってシャープに成長 していく傾向を示した。結晶粒内のY₂O₃濃度(2~4 mol%)は、T相のY₂O₃濃度に対応するので、T相粒子 間の全てのT-T粒界で、Y³⁺が約10nm以下の幅で偏析 していることが確認された。3Yのリートベルト解析 によれば、C相は1300℃で生成しており、 f_c =10.4 mass%である(Fig. 4)。(1)式に、平均結晶粒径 (Fig. 2 よりD \cong 180nm)と偏析幅(Fig. 8(c)より $\omega \cong 6$ nm)の値を代入すると、 $f_c' \cong 9.7$ mass%が得ら れる。このことから、2Yと同様に、1300℃ではY³⁺が 偏析しているほとんどの粒界でT→C拡散相変態して いることが分かった。本結果を考慮すると、Fig. 5 (d)で観察された結晶粒内でのY³⁺濃度の高いC相領域 は、Y³⁺が偏析している粒界及び/又は三重点から形成 され始めると結論される。

Fig. 5(d)の結果によれば、T及びC相粒子間の界 面も、1500℃で焼結させた3Yのシングルドメイン内 に形成される。**Fig. 9**(a)に示されるように、T-T粒 界とは異なったY³⁺の偏析プロファイルも1500℃で観 察された。(a)に対応するHRTEM像も**Fig. 9**(b)に 示す。左側の結晶粒子はY₂O₃濃度が約6 mol%なのでC 相粒子、一方、右側の結晶粒子はY₂O₃濃度が約2 mol% なのでT相粒子である。このことから、**Fig. 9**(b)の 粒界は、T相粒子とC相粒子の間の粒界(C-T粒界) であり、**Fig. 5**(d)の結果によれば、このようなC-T粒界が形成されることは合理的である。1500℃で焼 結させた2Yでは、C-T粒界は観測されず、**Fig. 5**(b)の 結果と一致している。

一方、1300及び1500℃で焼結させた8Y(e,f)では、

Fig. 8 Y-concentration profiles across the T-T grain boundaries in 2Ys, 3Ys, and 8Ys sintered at 1300° and 1500°C: (a) 2Y-1300°C, (b) 2Y-1500°C, (c) 3Y-1300°C, (d) 3Y-1500°C, (e) 8Y-1300°C, (f) 8Y-1500°C.

Fig. 9 C-T grain boundary in 3Y sintered at 1500°C: (a) Y-concentration profile and (b) HRTEM image.

Y³⁺の偏析は両方の粒界で観測されたが、その偏析量 は2Y及び3Yよりもかなり少ないことが分かった。結 晶粒内のY₂O₃濃度(7~9 mol%)は、C相のY₂O₃濃度 に対応する。このことから、8Yの粒界では、C相粒子 間の全ての粒界(C-C粒界)で、Y³⁺が約10nm以下の 幅で僅かに偏析しており、その偏析量は焼結温度に依 存せず、ほとんど変化しないことが分かった。

4.考察

[1] Y-TZPのT→C拡散相変態

既報¹⁴⁾⁻¹⁶⁾で、著者は、Y-TZPのT→C拡散相変態メ カニズムとしてGBSIPTモデルを提案しており、次の ような相変態メカニズムを報告した。 ZrO_2 -Y $_2O_3$ 系の 状態図¹⁹⁾によれば、Y-TZPのT-C二相構造は熱力学的 に安定であり、温度の増加に伴ってC相の生成量は増 大する。初期焼結過程では、Y-TZPの粒界にはY³⁺が 偏析しており、焼結温度の増加とともにC相が熱力学 的に安定である温度に到達すると、Y³⁺が偏析してい る粒界からT→C拡散相変態は起こりC相が生成し始め る。T-C相分離の進行とともに、C相領域は粒界に隣 接した結晶粒子の内部に形成され、T-C二相粒子構造 からなる微細組織が形成される。

本解析結果をもとに、3Yの立方晶生成メカニズム は、Fig.10に模式的に示されたモデル(b)を用いて 次のようにまとめられる。1300℃で焼結させた3Yで は、Y³⁺の粒界偏析は明瞭に観測されており、Y³⁺が偏 析しているほとんどの粒界近傍では、T→C拡散相変 態によりC相が形成されている。焼結温度が増加する と、Y³⁺の偏析幅は粒成長に伴って増大し、その結果 として、Y³⁺濃度の高いC相領域が粒界に隣接した結晶 粒子の内部に形成される。ここで、C相領域の増大は、 T相領域のY³⁺濃度がC相領域へのY³⁺の拡散によって減 少することに対応する。1500℃では、Y³⁺の偏析ピー クはシャープに成長し、Fig.5 (d) に示されるよう に、Y³⁺濃度の高いC相領域が、粒界及び/又は三重点 を起点に結晶粒子の内部に形成される。このように、 3YのC相生成メカニズムは、GBSIPTモデルで合理的 に理解される。

Fig.10(a) に、2YのC相生成メカニズムのスキー ムを示す。1300℃で焼結させた2Yでは、3Yと同様に、 Y³⁺が偏析しているほとんどの粒界近傍でT→C拡散相 変態が起こり、C相が形成されている。焼結温度の増 加に伴って、Y³⁺の偏析ピークはシャープに成長し、C 相領域がGBSIPTメカニズムに従って粒界に隣接した 結晶粒子の内部に形成される。ZrO₂-Y₂O₃系の状態

Fig.10 Scheme of the cubic-formation and grain-growth mechanisms in YSZ proposed on the basis of the present analytical results: (a) 2Y, (b) 3Y, (c) 8Y. The gray parts of the grain-boundary indicate segregation of Y³⁺ ions. The white and gray regions of grain interior represent the tetragonal and cubic phases, respectively. GB is grain boundary.

図¹⁹⁾ によれば、2YのY₂O₃濃度では、C相は本実験の 温度範囲で存在しており、その量は3Yのよりもかな り少ないことが示されている。実際、1500℃で焼結さ せた2Y(Fig.5(b))では、結晶粒内でのY³⁺濃度の 高いC相領域は、粒界及び/又は三重点近傍に極狭く 形成されており、その領域は3Y(Fig.5(d))よりも かなり少ないことが分かる。この結果は、状態図から 予測されるC相の生成挙動と一致しており、2YのC相 生成メカニズムもGBSIPTモデルで合理的に説明する ことができる。

[2] YSZの粒成長

焼結過程での8Yの粒成長は、2Y及び3Yよりもかな り速く(Fig.2)、これまでに2Y及び3Yの粒成長が遅 い理由として、T-C二相混合組織モデル(Fig.1)の マイナー相であるC相粒子のピン止め効果によって理 解されている^{4),5)}。しかしながら、上記のセクション [1] で論じたように、2Y及び3Yの微細組織は、 GBSIPTメカニズムによって形成されたT-C二相粒子 構造であり、この構造を考慮すると、GBSIPTメカニ ズムが粒成長を支配していると考えられる。YSZの粒 成長に及ぼすY³⁺の偏析挙動の影響を明らかにするた めに、1300及び1500℃で焼結させた2Y,3Y及び8Yの 微細組織の特徴をTable 1にまとめた。ここで、Y³⁺偏 析の比率は $\alpha = C(gb)/C(\ell)$ として定義した。C(gb)と*C*(1) は、それぞれFig.8に示された粒界でのピー ク最大値とベースライン高さのY₂O₂濃度を表す。ベー スラインは、粒界からの距離が約±5 nmである2点を 直線的に結ぶことによって求めた。Table 1のα値は、 各試料で測定された3~5箇所の粒界から求められた値 の平均値として示した。粒成長は、粒界に偏析してい るY³⁺と結晶粒内に形成されたC相領域が抑制している と推定される。そこで、2Yと3Yの微細組織の特徴を 比較すると、結晶粒径とαは各焼結温度に対してほぼ 等しいものの、3Yのf_cは2Yよりもかなり大きい値であ ることが分かった。この結果は、αが粒成長メカニズ ムに直接作用しており、結晶粒内に形成されているC 相領域はほとんど影響を及ぼしていないことを示して いる。一方、1300及び1500℃で焼結させた8Yのα値 はほぼ等しく、2Y及び3Yよりもかなり小さいことが 分かった。8Yの結晶粒径は、各々の焼結温度で2Y及 び3Yよりも大きいので、αの減少は粒成長を促進し ていると思われる。

溶質ドラッグ理論²²⁾によれば、粒界移動速度(v) は下式によって与えられる。

$$\nu = \frac{1}{\Delta C} \left(\frac{D}{akT} \right) \cdot F_{\text{drag}} \tag{2}$$

ここで、 F_{drag} は全ドラッグ力,Dは溶質拡散定数, Δ Cは過剰溶質濃度,aは粒界幅,kはBoltzmann定数, Tは絶対温度である。 ΔC は、粒界に偏析している溶 質原子(又はイオン)の濃度になるので、本実験で見 積られた α は、定性的には ΔC に対応することになる。 (2)式によれば、 α (即ち、 ΔC)がT一定の条件で増 加するとvが減少するので、その結果として結晶粒径 は小さくなる。この予測は、2Y,3Y及び8Yの結果と 一致する。

Zenerのピン止めモデルによれば、粒界移動に対す るマイナー相粒子のドラッグ力は、全粒界エネルギー の減少の結果として起こり、マイナー相粒子が粒界面 を占有することによって生じる。マイナー相粒子のド ラック力は、メジャー相の粒成長速度がマイナー相よ りも速いときに作用する。Fig. 8 及びFig. 9 から分か るように、T-T粒界でのY³⁺偏析はC-T粒界よりもかな り多いので、T-T粒界のv(T-T)はC-T粒界のv(C-T) よりも小さくなる(即ち、v(C-T)>v(T-T))。v(T-T) はT相粒子(メジャー相)、v(C-T)はC相領域(マイ

Specimen	Sintering temperature (°C)	Cubic-phase fracttion (mass%)	Y ³⁺ ion distribution in grain interiors	α	Average grain size (µm)
2Y	1300	6.8	Nearly homogeneous	2.1	0.2
2Y	1500	7.2	Nearly homogeneous	3.3	0.5
3Y	1300	10	Nearly homogeneous	1.9	0.2
3Y	1500	17	Heterogeneous	2.8	0.5
8Y	1300	100	Homogeneous	1.1	0.5
8Y	1500	100	Homogeneous	1.2	4

Table 1 f_c -Values, Y3+ ion Distributions in Grain Interiors, α -Values, and Average
Grain Sizes of 2Ys, 3Ys, and 8Ys sintered at 1300° and 1500°C

ナー相)の成長速度にそれぞれ対応するので、C相領 域はピン止め点として有効に作用しないと結論され る。この結論は、2Yと3Yのfcの差(即ち、C相領域の 差)が粒成長にほとんど影響を及ぼしていない結果と 一致する。このことから、YSZの粒成長速度は、粒界 に偏析されたY³⁺の濃度によって制御されており、そ のメカニズムは溶質ドラッグ効果によって合理的に理 解できることが明らかになった。

上記の考察をもとに、**Fig.10**に、2Y, 3Y及び8Yの Y³+粒界偏析及び粒成長挙動のスキームをまとめた。

[3] Y³⁺の粒界偏析に対する駆動力

YSZのY³⁺偏析の駆動力は、粒界での歪エネルギー緩 和21)と静電気電荷補償23)の観点から論じられている。 本結果では、Fig.8に示されているように、T-C二相 からなる2Y及び3YのY³⁺の偏析挙動は、C相単相から なる8Yの挙動と比較してかなり異なっている。この 違いは、上記の二つの因子よりもT-C二相分配の駆動 力が、2Y及び3YでのY³⁺の偏析過程に大きく影響を及 ぼしていると考えられる。C構造は、8YのY₂O2濃度及 び本実験の焼結温度範囲で熱力学的に安定な相であ り、C-C粒界でのY³⁺の偏析量は少なく、その偏析挙 動は焼結温度に依存しない。一方、2Y及び3Yとも、 T-C二相領域でのC相のモル分率は、熱力学的に、平 衡温度の増加に伴って増大するので¹⁹⁾、T-C二相分配 の駆動力は焼結温度の増加に伴って増大することにな る。Y³⁺の偏析は、焼結の初期段階で粒界に形成され 始め^{15),16)}、偏析ピークは焼結温度の増加に伴って成長 し、GBSIPTメカニズム(即ち、T-C二相分配の進行) に従ってC相領域が形成される。8Yの挙動と比較する と、2Y及び3YでのY³⁺偏析の発達段階は、歪エネルギ ー緩和及び/又は静電気電荷補償の因子よりもT-C二 相分配の駆動力によって主に引き起こされていると結 論づけられる。

5. 結 論

本研究では、YSZの焼結過程でのT→C拡散相変態 及び粒成長メカニズムを明らかにするため、1100~ 1500℃で焼結させた2Y,3Y及び8Yの結晶粒界と結晶 粒子内部の微細組織をHRTEM-及びSTEM-ナノプロ ーブEDS法を用いて系統的に調べた。得られた結果は、 下記の通りである。

 ⑧ 8Yの結晶粒径の増大挙動は、1200℃まで2Y及び 3Yとほぼ同様であり、この温度を超えると2Y及び3Y よりも急激に増大した。2Y及び3Yの結晶構造は、焼 結過程ではT-C二相であり、焼結の冷却過程で2YのT 相の一部がM相に変態した。8Yの結晶構造は、C相単 相であった。

② 1300℃で焼結させた2Y及び3Yでは、結晶粒内の Y³⁺分布はほぼ均一であった。1500℃で焼結させると、 2Yでは結晶粒子のほとんどがT相であったが、3Yでは Y³⁺濃度の高いC相領域が、粒界に隣接した結晶粒内に 明瞭に形成された。しかしながら、1300及び1500℃で 焼結させた8Yの結晶粒子は、Y³⁺が均一に分布してい るC相の構造であった。

③ 2Y, 3Y及び8Yの粒界面では、アモルファス相又 は第二相は存在せず、Y³⁺が約10 nm以下の幅で粒界に 偏析していた。2Y及び3YでのY³⁺の偏析ピークは、焼 結温度の増加に伴って成長した。一方、8Yの偏析量 は、2Y及び3Yよりもかなり少なく、焼結温度に依存 しないことが分かった。この違いは、Y³⁺の偏析過程 にT-C二相分配の駆動力を導入することによって理解 することができる。

④ C相の生成メカニズムは、GBSIPTモデルを用い て合理的に理解することができる。粒成長挙動につい ては、Y³⁺の偏析量が減少すると、粒成長速度が増大 することが明らかになった。故に、粒成長メカニズム は、粒界に偏析しているY³⁺の溶質ドラッグ効果によ って合理的に理解することができる。

謝 辞

本研究を進めるにあたり、ジルコニア微細組織の測 定と解析は、東京大学 幾原雄一教授,物質・材料研 究機構 吉田英弘先生にご指導を賜りました。深く感 謝し、御礼申し上げます。

文 献

- Advances in Ceramics, Vol.12 in Science and Technology of Zirconia II. Ed. by Claussen, N., Rühle, M. and Heuer, A.H. The American Ceramic Society, OH, (1984).
- 2) I.G.Lee and I-W.Chen, pp.340-45 in Sintering '87.
 Edited by S.Somiya, M.Shimada, M. Yoshimura, and R.Watanabe. Elsevier Applied Science, London, U.K., 1988.
- 3) F.F.Lange, D.B.Marshall and J.R.Porter, pp.519-32 in Ultrastructure Processing of Advanced Ceramics. Edited by J.D.Mackenzie and D.R.Ulrich. Wiley, New York, 1988.

- 4) Y.Yoshizawa and T.Sakuma, *ISIJ Int*, **29** (9), 746 (1989).
- 5) T.Sakuma and Y.Yoshizawa, *Mater.Sci.Forum*, 94–96, 865 (1992).
- 6) T.Stoto, M.Nauer, and C.Carry, *J.Am.Ceram.Soc.*,74 (10), 2615 (1991).
- 7) M.L.Mecartney, *J.Am.Ceram.Soc.*, **70** (1), 54 (1987).
- 8) T.G.Nieh, D.L.Yaney, and J.Wadsworth, *Scripta Metall.*, **23** (12), 2007 (1989).
- 9) T.Hermansson, H.Swan, and G.Dunlop, pp.329-33 in *Euro-Ceramic*, Vol. 3. Edited by G.du With, R.A.Terpsta and R.Metselaar. Elsevier Applied Science, London, U.K., 1989.
- M.M.R.Boutz, C.S.Chen, L.Winnubst, and A.J.Buggraaf, *J.Am.Ceram.Soc.*, **77** (10), 2632 (1994).
- S.Primdahl, A.Tholen, and T.G.Langdon, Acta Metall. Mater., 43 (3), 1211 (1995).
- 12) Y.Ikuhara, P.Thavorniti, and T.Sakuma, Acta. Mater., 45 (12), 5275 (1997).
- S.Tekili and T.J.Davies, *Mater. Sci. Eng.*, A 297, 168 (2001).
- 14) K.Matsui, H.Horikoshi, N.Ohmichi, M. Ohgai, H.Yoshida, and Y.Ikuhara, *J.Am.Ceram.Soc.*, 86 (8), 1401 (2003).
- K.Matsui, N.Ohmichi, M. Ohgai, H.Yoshida, and Y.Ikuhara, *J.Ceram.Soc.Jpn.* **114** (3), 230 (2006).
- 16) 松井光二、東ソー研究・技術報告、54、3-15 (2010).
- 17) 大道信勝、神岡邦和、植田邦義、松井光二、大貝
 理治、日本セラミックス協会学術論文誌、107
 (2)、128 (1999).
- 18) 山口喬、セラミックス、19(6)、520(1984).
- 19) H.G.Scott, J.Mater.Sci., 10, 1527 (1975).
- 20) J.Zhao, Y.Ikuhara, and T.Sakuma, J. Am. Ceram. Soc., 81 (8), 2087 (1998).
- P.Thavorniti, Y.Ikuhara, and T.Sakuma, J. Am. Ceram. Soc., 81 (11), 2927 (1998).
- 22) D.J.Srolovitz, R.Eykholt, D.M.Barnett, and J. P. Hirth, *Phys. Rev.*, B35 (12), 6107 (1987).
- 23) N.Shibata, F.Oba, T.Yamamoto, and Y.Ikuhara, *Phil. Mag.*, 84 (23), 2381 (2004).