含硫黄環状ポリオレフィンの合成と特性

田	隆	志
本	敏	秀
Л	貴	裕
Л		浩
	田 本 川 川	田 隆 本 敏 川 貴 川

Synthesis and Properties of Sulfur-containing Cyclic Polyolefine

Takashi OKADA Toshihide YAMAMOTO Takahiro KITAGAWA Hiroshi YAMAKAWA

In the plastic optical lens industry, thermoplastic resins that possess both high refractive index and high Abbe s number have been actively sought. In an attempt to improve the trade-off relationship between these two characteristics, two novel sulfur-containing cyclic polyolefins, Compound 13a (sulfur content 21 wt%) and Compound 14a (sulfur content 32 wt%) were synthesized through the ring-opening metathesis polymerization and hydrogenation of sulfur-containing norbornene compounds. Compound 13a gave a high refractive index of 1.583 with an Abbe s number as favorable as 49, and showed a high glass-transition temperature and a low water-absorption rate, attributable to its cyclic polyolefin structure. However, Compound 14a gave a refractive index as high as 1.626, but showed poorer thermal resistance than Compound 13a because of the higher carbon-sulfur bond content.

1.はじめに

プラスチック材料は、軽量で成形し易く、一度の射 出成形で多数の製品を製造できるという特徴を持って おり、レンズ等の光学材料においても無機ガラスに変 わってプラスチック材料が多く用いられるようになっ てきた¹)。

近年、発展が目覚しい携帯電話のカメラには多くの プラスチックレンズが使用されている。カメラ用のレ ンズは、鮮明な画像を得るため低吸水性や低複屈折が 求められ、これまでのポリメチルメタクリレート樹脂 (PMMA)やポリカーボネート樹脂(PC)に変わり、 シクロオレフィンポリマーやポリエステル樹脂等の新 しい熱可塑性樹脂が多く用いられるようになってき た²⁻⁵)。一方で、携帯電話のカメラ機能は、より高 精細化、軽量小型化の方向に進んでいる。カメラの画 素数が増加(高精細化)すると使用されるレンズ枚数 が増加するため、レンズを薄くする必要があり、高屈 折率の材料が求められている^{6,7})。

材料の屈折率とアッベ数は、式(1)(2)で表さ れる⁸⁾。式(1)より、屈折率を高くするには分子屈 折[R]の大きな構造を導入すれば良いが、一方で、 式(2)より屈折率が高くなるとアッベ数が小さくな ることが分かる。高屈折率と高アッベ数を両立させる には、[R] 及び[R]/[R]の値が大きい構造 の導入が必要であり、硫黄原子の導入が有効であるこ とが知られている^{9,10}。

$$V_{d} = \frac{6n}{(n+2)(n+1)} \times \frac{[R]}{[R]}$$
(2)

$$\begin{pmatrix} V_{d} : \mathcal{P} \mathbf{y} \mathbf{x} \mathbf{x}, n : D \mathbf{k} \mathbf{0} \mathbf{n} \mathbf{f} \mathbf{x} \\ [R] : \mathbf{h} \mathbf{F} \mathbf{n} \mathbf{f}, [R] : \mathbf{h} \mathbf{F} \mathbf{h} \mathbf{f} \mathbf{x} \end{pmatrix}$$

また、レンズ材料は、周辺環境に対して安定な光学 特性を維持することが求められるため、低吸水性、高 ガラス転移温度が重要な要求特性である¹¹)。そこで、 耐熱性、低吸水性を確保する為、環状ポリオレフィン を基本骨格とし、硫黄原子を骨格中に導入することで 高屈折率と高アッベ数を併せ持つ熱可塑性樹脂の開発 に着手した。本報告では、含硫黄環状ポリオレフィン の合成と特性について報告する。

2.実験

[1]試 薬

trans - 1,4 - ジクロロ - 2 - プテンは、市販品(和光 純薬工業)を塩化カルシウム存在下で蒸留精製して用 いた。硫化ソーダ(ナガオ株式会社製のフレーク状含 水硫化ソーダ)、Ru触媒(アルドリッチ社製)、p-トルエンスルホン酸ヒドラジド(東京化成)、脱水溶 媒(和光純薬工業)、及びその他の試薬(和光純薬工 業)は購入品をそのまま使用した。

[2]実験

(1) モノマー合成

硫黄を含むノルボルネン誘導体の合成例は少なく、 類似化合物の合成例を参考にScheme1、2に示すルートで4種類の含硫黄ノルボルネン化合物を合成した。

2 - チア - 1,2 - ジヒドロ - trans - ジシクロペンタジ エン (1a)は、シクロペンタジエン (CPD)と trans - 1,4 - ジクロロ - 2 - プテン (1,4·DCB)のディ ールズアルダー反応で得たtrans - 2,3 - ビス(クロロメ チル)-5 - ノルボルネン (3)を、相間移動触媒存在 下で硫化ソーダと反応¹²⁾ させトータル収率23%で合成した。また、2-チア-1,2-ジヒドロ-endo-ジシ クロペンタジエン(1b)は既報¹³⁾に従いトータル収 率32%で合成した。

trans - 1,3 - ジチオトリシクロ - [5,4,0,1^{6,9}] - ドデセン (2a) は、既報¹⁴⁾ に従いtrans - 2,3 - ビス (メルカプトメチル) - 5 - ノルボルネンを合成した後、 アルカリ存在下でジプロモメタンを反応させてトータ ル収率21%で合成した。また、endo - 1,3 - ジチオト リシクロ - [5,4,0,1^{6,9}] - ドデセン (2b) は、 既報¹⁵⁾ に従い合成した4,7 - ジヒドロ - 1,3 - ジチエピ ン (11) と、CPDをディールズアルダー反応してト ータル収率34%で合成した。

(2) メタセシス重合

代表的な実験操作を以下に示す。重合操作は、すべ て窒素下で行った。乾燥したシュレンク管に所定量の 脱水塩化メチレン、モノマー、フェニルビニルスルフ ィドを入れモノマー溶液を調製した。別の乾燥したシ ュレンク管に所定量のRu触媒と脱水塩化メチレンを 入れ触媒溶液を調製した。この触媒溶液にモノマー溶 液をシリンジで投入し重合を開始した。4時間後、重 合液をメタノールに注ぎ込みポリマーを析出させ、3 過した後、真空下、室温で5時間乾燥した。

(3)水素化

乾燥した反応器に、所定量のポリマーとo-ジクロ ロベンゼンを入れ、室温で撹拌してポリマーを溶解さ せた。このポリマー溶液に所定量のN,N-ジメチル シクロヘキシルアミンとp-トルエンスルホン酸ヒド ラジドを加え、撹拌しながら110 で4時間反応した。 反応液は、メタノールに投入しポリマーを析出させた 後、ろ過してポリマーを得た。得られたポリマーはク ロロホルムに溶解して不溶分をろ過した後、メタノー ルに投入し精製した。精製したポリマーは、真空下、 80 で8時間乾燥した。

Scheme 1 Synthesis of 2·Thia·1,2·dihydro·*trans*·dicyclopentadiene (1a) and 2·Thia·1,2·dihydro·*endo*·dicyclopentadiene (1b)

Scheme 2 Synthesis of *trans* • 1,3 • dithio • tricyclo • [5,4,0,1^{5,8}] • dodecene(2a) and *endo* • 1,3 • dithio • tricyclo • [5,4,0,1^{5,8}] • dodecene(2b)

[3] 測定

モノマーは¹H - NMR (日本電子製JNM・GSX・270、 溶媒;重クロロホルム、測定温度;25)及びGC -MS (Perkin Elmer製Turbomass/Gold)で確認した。 ポリマーは、¹H - NMR及び元素分析 (CHNはPerkin Elmer製2400 、SはイオンクロマトグラフDIONEX 製SERIES2000i/SP)で確認した。分子量はゲルパー ミエーションクロマトグラフ (東ソー製HLC・8020、 カラム;TSK・GEL GMHHR・H、溶媒;クロロホル ム、標準;ポリスチレン)で測定した。ガラス転移温 度はDSC (セイコー電子工業株式会社製DSC2000) 熱重量減少温度はTG/DTA (SIIナノテクノロジー製 TGDTA200)で測定した。吸水率はJIS・K7209に準拠 して測定した。線膨張係数はJIS・K7197に準拠して測 定した (SIIナノテクノロジー製TMA/SS6100型)。比 重はJIS・K7112に準拠して測定した。粘度の周波数分 散はUBM製Rheoge E・4000を用い剪断モードで測定 した。光学特性は、ポリマーを180 で熱プレスして 厚さ100µmフィルムを作成して測定した。屈折率、 アッベ数はプリズムカップラー(メトリコン社製PC・ 2010)、全光線透過率はヘーズメーター(日本電色工 業株式会社製NDH1000)で測定した。光弾性係数は 応力下での複屈折を偏光顕微鏡(株式会社ニコン製 Optiphoto2)を用いてSenarmont法¹⁶⁾により測定し算 出した。

3.結果及び考察

(1) メタセシス重合

近年、Fig. 1 に示すようなRu系の触媒が開発され、 硫黄を含む化合物のメタセシス反応が報告されてい る¹⁷⁻²³)。

Fig. 1 Chemical structure of Ru catalysts

そこで、Ru系触媒を用いて、2 - チア - 1,2 - ジヒド ロジシクロペンタジエン(1a)(1b)及び1,3 - ジチ オトリシクロ - [5,4,0,1^{6,9}] - ドデセン(2a) (2b)の開環メタセシス重合(ROMP)を行った。

重合結果をTable 1 に示す。

Ru**触媒を用いた(**1a)の重合では、触媒(a)(b) は重合活性を示さず(Run1,2) 触媒(c)で重合が進

行し、溶媒に不溶のポリマーが得られた(Run3)。連 鎖移動剤にフェニルビニルスルフィドを用いて重合を 行ったところ(Run4-6)、モノマー/連鎖移動剤=1/ 100(モル比)で溶媒可溶のポリマーが得られた。ま た、(1a)の重合に対する触媒(c)の活性は高く、 (1a)に対して1/10000(モル比)の触媒量でも重合 収率は70%以上であった(Run7,8)。

Run5で得られたポリマーの¹H - NMR (Fig. 2)及 び元素分析結果(Table 2)から、このポリマーは (1a)の開環メタセシス重合体(11a)であることを確 認した。

触媒(c)による(1b)の重合では、ポリマー収率 は12%と低く、また、得られたポリマーの分子量 (Mn)も5000程度と低分子量ポリマーであった (Run9)。反応温度を60 に上げることで収率は30% に向上したが分子量(Mn)は5000と低かった (Run10)。

Fig.3に(1a)と(1b)の転化率の経時変化を示す。

Table 1	Ring opening metathesis polymerization (ROMP) of sulfur-containinng norbornene
	derivatives (1a) (1b) using Ru catalysis

RUN	Mª	Cat.	[Ru]	[M ^a]	[CTA ^b]/[M ^a]	Temp.	Time	Yield	Mn ^c	Mw/Mn
			[mmol/L]	[mmol/L]	[mol/mol]	[]	[hr]	[%]	× 10⁴	
1	1a	а	4	100	0	r.t.	72	0	-	-
2	1a	b	2	50	0	r.t.	48	0	-	-
3	1a	С	0.5	500	0	r.t.	4	99	non	soluble
4	1a	С	0.5	500	1/500	r.t.	4	99	non	soluble
5	1a	С	0.5	500	1/100	r.t.	4	97	1.9	3.7
6	1a	С	0.5	500	1/20	r.t.	4	92	0.5	1.9
7	1a	С	0.05	500	1/100	r.t.	30	70	2.0	2.5
8	1a	С	0.05	500	1/100	60	4	87	2.2	2.5
9	1b	С	0.5	500	1/100	r.t.	24	12	0.5	2.0
10	1b	С	0.5	500	1/100	60	5	30	0.5	1.8

^aM ; monomer, ^bCTA ; Charge transfer agent (Phenyl-Vinyl sulfid)

 $^\circ\text{Mn}$; Determined by GPC relative to polystyrene standards.

Fig. 2 ¹H·NMR spectrum of sulfur containing polymer (11a)

14

	(11a) (12a)			
polymer		С	Н	S
		[wt%]	[wt%]	[wt%]
[11a]	Calculation	71.0	7.9	21.0
	Experiment	70.4	7.5	21.0
[12a]	Calculation	60.6	7.1	32.2

58.7

6.9

34.4

Table 2 Result of elemental analysis of polymer (11a), (12a)

(1b)を用いた場合は、重合開始1時間で触媒活性が なくなっていることが分かる。このことから、(1b)

Experiment

Fig. 3 Time dependence of monomer (1a), (1b) conversion

の重合では、生成したポリマーが触媒を失活させてい るものと推定した。

次に、硫黄原子を2つ含んだノルボルネン誘導体で ある(2a)と(2b)のROMPを触媒(c)で行った。 結果をTable 3 に示す。

(2a)からは、収率52%で分子量(Mn)18000のポ リマーが得られた(Run1)。この重合系に、連鎖移動 剤であるフェニルビニルスルフィドを添加すると、分 子量の低下と共に重合収率も低下した(Run2)。(2b) は、先の(1b)の場合と同様に重合収率は8%と低 く、また、得られたポリマーの分子量(Mn)も6000 と低いものであった(Run3)。

Run1で得られたポリマーは、¹H - NMR (Fig. 4) 及び元素分析結果 (Table 2)から、(2a)の開環メ タセシス重合体 (13a) であることを確認した。 (2)水素化

Table 3 Ring opening metathesis polymerization (ROMP) of sulfur containinng norbornene derivatives (2a), (2b) using Ru catalysis

Run	Ma	Cat.	[Ru]	[Mª]	[CTA ^b]/ [M ^a]	Temp.	Time	Yield	Mn⁰	Mw/Mn
			[mmol/L]	[mmol/L]	[mol/mol]	[]	[hr]	[%]	× 10 ⁴	
1	2a	С	2	500	0	60	4	52	1.8	1.7
2	2a	С	2	500	1/150	60	4	9	0.7	1.7
3	2b	С	2	500	0	60	4	8	0.6	1.2

^aM ; monomer, ^bCTA ; Charge transfer agent (Phenyl-Vinyl sulfid) ^cMn ; Determined by GPC relative to polystyrene standards.

Fig. 4 ¹H-NMR spectrum of sulfur-containing polymer (12a)

一般的に硫黄原子は、金属に対して強い触媒毒にな ることが知られているが²⁴、硫黄を含む化合物を貴金 属触媒と水素で接触水素還元する例が報告されてい る²⁵⁻²⁹⁾。そこで、代表的な水素化触媒であるPdやRu 触媒を用いて、水素ガスによる(11a)の水素化を試 みた。結果をTable 4 に示す。水素ガスによる(11a) の水素化は、触媒の種類、反応温度に関係なく進行し なかった。

ポリマーの水素化法として、p - トルエンスルホン 酸ヒドラジド (PTSH)を還元剤に用いる方法が知ら れている^{30,31})。そこで、PTSHによる (11a) (12a) の水素化を行った。

結果をTable 5 に示す。

(11a)のオレフィン量に対して5当量のPTSHと 添加剤として5当量のN,N-ジメチルシクロヘキシ ルアミン(DMCA)を加え、o-ジクロロベンゼン (o·DCB)中、110 で4時間反応を行った。回収し たポリマーの¹H - NMR分析から、オレフィンの96% が水素化されていた(Run1)。また、このポリマーの 元素分析結果から、このポリマーが目的の含硫黄環状 ポリオレフィン(13a)であることを確認した (Table 6)。PTSHを用いた(11a)の水素化では、 PTSHをオレフィンに対して10当量使用してもオレフ ィンの転化率は向上せず(Run2)、反応温度や反応濃 度を上げるとオレフィン転化率は低下する傾向を示し た(Run3,4)。

PTSHによる(12a)の水素化は、12当量のPTSHを 用いた場合でもオレフィンの転化率は49%と低く、 PTSHを18当量まで増やしたがオレフィン転化率は 56%であった(Run2)。反応濃度の影響を調べたとこ ろ、濃度を0.5%に下げてもオレフィン転化率は向上 しなかったが(Run7)、濃度を1%に上げることで転 化率は78%まで向上した(Run8)。オレフィン転化率 を上げるため、Run8で得られたポリマーを同条件で 3回水素化したところ、オレフィン転化率は97%とな った。このポリマーの元素分析を行い目的の含硫黄環 状ポリオレフィン(14a)であることを確認した (Table 6)。

[2]物 性

Table 7 に含硫黄環状ポリオレフィン(13a)(14a) の物性を示す。比較のため、ポリカーボネート(PC) ポリメチルメタクリレート(PMMA)及びシクロオ レフィンポリマー(COP)の文献値^{1、11、32)}を合わせ て示した。

(13a)は、ガラス転移温度が124、1%重量減少

Run	Cat.	solvent	H ₂ press.	Temp.	Time	Conv. ^a
			[MPa]	[]	[hr]	[%]
1	5 % Ru/C	o-DCB	1	220	4	0
2	3%Pd/SiO2	o.DCB	1	220	4	0
3	Ru cat.[c]	o.DCB	1	150	4	0
4	RuHCI(CO)(PPH3)	o-DCB	1	150	4	0

Table 4 Hydrogenation of (11a) and (12a) using Pd or Ru catalysts

^aConv. ; Determined by ¹H-NMR.

Table 5	Hydrogenation	of ((11a)	(12a)	using	p-	Tolunenesul	fonylhydrazide
----------------	---------------	------	-------	-------	-------	----	-------------	----------------

Run	polymer	solventa	conc.	PTSH [♭]	DMCA ^c	Temp.	Time	Conv. ^d
			[wt%]	[eq.]	[mmol/L]	[]	[hr]	[%]
1	[11a]	o-DCB	1.5	5	5	110	4	96
2	[11a]	o-DCB	1.5	10	10	110	4	92
3	[11a]	o-DCB	1.5	5	5	140	4	88
4	[11a]	o-DCB	3	5	5	110	4	78
5	[12b]	TCE	0.8	12	12	110	4	49
6	[12b]	TCE	0.8	18	18	110	4	56
7	[12b]	TCE	0.5	18	18	110	6	59
8	[12b]	TCE	1	18	4	110	6	78

^ao-DCB ; ortho-dichrolobrnzene, TCE ; 1,1,2-trichloroethane

^bPTSH ; p-Toluenesulfonylhydrazide, ^cDMAC ; N, N-dimethyl-cyclohexylamine ^dConv. ; Determined by ¹H-NMR.

1	7
1	1

Table 6	Result of elemental analysis of hydrogenated
	polymer (13a), (14a)

polymer		С	Н	S
		[wt%]	[wt%]	[wt%]
[13a]	Calculation	70.0	9.1	20.8
	Experiment	70.2	9.1	21.0
[14a]	Calculation	60.0	8.0	32.0
	Experiment	59.6	7.8	32.6

温度が360 と高い熱安定性を有する材料であること が分かった。また、レンズ材料の重要な要求特性であ る吸水率は0.04%とCOPと同等の低い値を示し、線膨 張係数、密度は既存のレンズ材料と同程度であった。 光学特性は、屈折率が1.583とPCと同等の高屈折率を 示しながら、アッペ数は49とCOPに近い値を示し、 光弾性係数はPCの1/5程度と低複屈折性を示した。

(14a)は、ガラス転移温度が127 と高い値を示し たが、1%重量減少温度は280 と熱安定性は低かっ た。一般的に、C-S結合エネルギーは低く熱的に不 安定であることが知られていることから、熱安定性の 低下はC-S結合の増加が影響しているものと推定さ れる。光学特性は、屈折率1.626、アッベ数41とPCを 凌ぐ高屈折率と高アッベ数で、光弾性係数もPCの1/ 5程度と低複屈折性を示したが、全光線透過率は86% と低いものであった。

Fig. 5 Angular velosity dependence of fusion viscosity

Fig. 5 に、(13a)の180 での、角速度 に対する 溶融粘度の依存性を示した。(13a)の溶融粘度は、角 速度が大きくなると急激に小さくなることが分かっ た。ここで、角速度と剪断速度の間にCox - Merz則 が成立すると仮定すると、一般的な射出成形時の剪断 速度域(10³以上)では、1000Pa・s以下の低溶融粘度 になることが分かった。

4.まとめ

2種類の含硫黄環状ポリオレフィンを合成し、その 特性を評価した。環状ポリオレフィン骨格に硫黄原子 を導入することで、高屈折率と高アッベ数を両立する 材料になることが分かった。硫黄含量が32%のポリマ ー[14a]は、熱分解温度が低く熱的に不安定であっ たが、硫黄含量21%のポリマー[13a]は、熱分解温 度が高く高剪断領域では、溶融粘度が低くなる特性を 有していることが分かった。また、レンズ材料の重要 な要求特性である吸水率も低く、射出成形用のプラス チックレンズ材料として期待できる。

5.参考文献

- 1) 安田、プラスチック成形技術、2002年臨時増刊号、 1(2002)
- 2) 2007年光機能材料・製品市場の全貌、冨士経済株 発行
- 3) 小原、MATERIAL STAGE、5(8), 23 (2005)
- 4)ポリファイル、2004.9号、38(2004)
- 5)川崎、山田、電子材料、2005年7月号、49 (2005)
- 6)永田、三原、光技術コンタクト、42(9)、482(2004)
- 7)大槻、NIKKEI ELECTRONICS、2004.9.13号、79 (2004)

		[13a]	[14a]	PC ^{1, 11}	PMMA ^{1, 11}	COP ³²
Glass transition temperature Tg	[]	124	127	147	107	138
1% Weghit loss temperature	[]	360	280	-	-	-
Refractiv indices n _D	[-]	1.583	1.626	1.586	1.492	1.525
Abbe numder V_D	[-]	49	41	31	57	56
Transmittance	[%]	89	86	90	93	92
Stress optical coeff. for glassy resime Cg	[× 10 ⁻¹² Pa ⁻¹]	17	16	75	- 6	7
A coeff. of linear expansion	[× 10 - 5 cm/cm/]	7	no data	6	7	7
Water absorption	[%]	0.04	no data	0.2	0.3	< 0.01
Density	[g/cc]	1.16	no data	1.2	1.19	1.01

Table 7 The properties of sulfur-containing polyolefine (13a) and (14a)

- 8)プラスチック・機能性高分子材料辞典、産業調査 会編
- 9) 河合、MATERIAL STAGE、 2(12), 8(2003)
- 10) 越智、日本レオロジー学会 高分子加工技術研究 会第57回研究会例会予稿集、11 (2005)
- 11) 堂、MATERIAL STAGE、 5(4), 102 (2005)
- 12) D. Landini, F. Rolla, Organic Syntheses, 833
- 13) P. Wilder.Jr, L. A. Feliu-Otero, J. Org.Chem., 30, 2560 (1965)
- 14) J. Houk, G. M.Whitesides, J.Am.Chem.Soc., 109,6825 (1987)
- 15) D. N. Harpp, K. Stelou, B. T. Friedlander, Organic Preparation and Procedures Int., 10(3), 133 (1978)
- 16) 粟屋、高分子素材の偏光顕微鏡入門
- 17) R. H. Grubbs , Handbook of Metathesis , Wiley-VCH, New York, (2003)
- 18) S. K. Armstrong, B. A. Christie, Tetrahedoron Letter, 37(52), 9373 (1996)
- 19) Y. S. Shon, T. R. Lee, Tetrahedoron Letter, 38 (8), 1283 (1997)
- 20) a) J. E. O'Gara, J. D. Portmess, K. B. Wagener, Macromolecules , 26 , 2837 (1993),
- b) K. B. Wagener, K. Brzezinska, J. D. Anderson, T. R. Younkin, K.Steppe, W. DeBoer, Macromolecules , 30 , 7363 (1997)
- 21) H. Katayama, Y. Fukuse, Y. Nobuto, K. Akamatsu, F. Ozawa, Macromolecules, 36, 7020 (2003)

- 22) B. R. Stepp, S. T. Nguyen, Macromolecules, 37, 8222 (2004)
- 23) M. Zhang, D. L. Flynn, P. R. Hanson, J. Org. Chem., 72, 3194 (2007)
- 24) 村上雄一監修、触媒劣化メカニズムと防止対策, 技術情報協会発行
- 25) R. Mozingo, S. A. Harris, D. E. Wolf, C. E. Hoffhine.Jr, N. R. Easton, K. Folkers, J. Am. Chem. Soc., 67, 2092 (1945)
- 26) L. Bateman, F. W. Shipley, J. Chem. Soc., 2888 (1958)
- 27) H. S. Broadbent, C. W. Whittle, J. Am. Chem. Soc., 81, 3587 (1959)
- 28) a) C. Bianchini, V. Herrera, M. V. Jimenez, A. Meli, R. Sanchez · Delgado, F. Vizza, J. Am. Chem. Soc. , 117 , 8567 (1995), b) C. Bianchini , A. Meli, S. Moneti, W. Oberhauser, F. Vizza, V. Herrera, A. Fuentes, R. A. Sanchez-Delgado, J. Am. Chem. Soc. , 121 , 7071 (1999)
- 29) A. F. Borowski, S. Sabo-Etienne, B. Donnadieu, B. Chaudret, Organometallics, 22(23), 4803 (2003)
- 30) S. F. Hahn, J. Poly. Sci. A. Poly. Chem., 30, 397 (1992)
- 31) C. P. Radano, O. A. Scherman, N. S. Stutzmann, C. Muller, D. W. Breiby, P. Smith, R. A. J. Janssen, E. W. Meijer, J. Am. Chem.Soc., 127, 12502 (2005)
- 32) 南、機能材料、20(8)、23(2000)

薯 君

氏名	岡田隆下志	氏名	山本敏秀				
	Takashi OKADA		Toshihide YAMAMOTC				
入社	昭和62年4月1日	入社	平成 2年4月1日				
所属	四日市研究所	所属	四日市研究所				
	新規分野		新規分野				
	ファインポリマーグループ		ファインポリマーグループ				
	主任研究員		主任研究員				

氏名	北	Л	貴	裕		氏名	山	Л	浩		
	Takahiro KITAGAWA						Hiroshi YAMAKAWA				
入社	平成 16年4月1日					入社	昭和59年4月2日				
所属	四日市研究所					所属	【 ポリマー事業部				
	新規分野										
	光学	≥材*	斗グノ	レープ							
	副目	E任石	开究員	Į							

秀