

1.はじめに

科学計測事業部では、昨年度、有機溶媒系SEC カラムの新しいシリーズとしてTSKgel SuperHZシリ ーズ(5グレードSuperHZ4000、SuperHZ3000、 SuperHZ2500、SuperHZ2000、SuperHZ1000)を上市 いたしました。SuperHZシリーズは、粒子径3µmの スチレンジビニルベンゼン系ポリマー充填剤を内径 4.6mm x 長さ15cmのカラムに充填したセミミクロカ ラムの仕様となっており、汎用されている内径 7.8mm×長さ30cmのSECカラムと比較して、同等 の分離が、測定時間で1/2に短縮され、単位時間 に送液する溶媒量で1/3となります。したがって、 測定に消費される溶媒量が、1/2×1/3=1/ 6に低減されることになります。このため、単位時 間あたりの測定件数の増加、ランニングコストの低 減が期待でき、大変ご好評戴いています。しかしな がら、これらの5グレードでは、高分子量成分の測 定を充分にカバーしているとは言えず、より高分子 グレードの上市が待望されていました。

このような背景のもと、分子量分画範囲が単一グ レードよりも広く設定可能なミックスグレードを商 品系列に加えることといたしました。ミックスグレ ードは、複数のグレードの充填剤を混合するため、 分画範囲の調整が容易で、直線性に優れた較正曲線 にすることが可能です。分子量分画範囲を考慮し、 高分子分離用SuperHZM-H、中低分子分離用 SuperHZM-M、低分子領域の分離に優れる中低分子分 離用SuperHZM-Nの3種のミックスグレードを検討し ました。

現在、販売しているSuperHZシリーズ(5グレード) の特徴としては、

- 1)高速分離(測定時間の短縮)
- 2) 省溶媒(溶媒消費量の低減)
- 3)低吸着性(幅広い種類の有機溶媒に対応)
- 4)機械的強度が高い(耐久性に優れる)

の4点が挙げられます。今回、3種のミックスグレー ドを商品化するにあたっても、これらの特徴を継承 する必要があります。しかしながら、高分子量成分 の分離においては、充填剤の粒子径、測定流速によ り高分子量成分の結合が切れる所謂、分子鎖切断が 起こり実際の分子量よりも低く測定される現象が知 られています。この分子鎖切断の問題を避けるため に高分子量成分分離用の充填剤には、通常グレード よりも粒子径の大きな充填剤を使用する必要があり ます。当然粒子径が大きくなると分離能は低下する ため、分子鎖切断を起こさせず、かつある程度の分 離能を維持する必要があります。そこで異なる粒子 径の充填剤を充填したカラムを試作し、各グレード 毎に最適の粒子径を検討し、商品仕様の決定および その評価を行いました。

2.実験

粒子径の異なる試作カラム(3,5,13,20,30µm)を 用いて18種の標準ポリスチレン(Mw=8420000~ 500)での較正曲線の比較を行い、分子鎖切断の起こ らない粒子径を決定いたしました。また、分子量分 布が広い試料の測定を行い、粒子径およびカラム本 数の分子量測定値への影響も調べました。

3.結果及び考察

[1] 充填剤粒子径の較正曲線への影響

粒子径の異なるカラム(3,5,13,20,30µm)を用い て流速0.35ml/min(線速度2.1cm/min)と0.175ml/min (線速度1.05 cm/min)の標準ポリスチレンによる較正 曲線の比較を行いました。図1に示すように充填剤 の粒子径が小さく、測定流速が速いほど分子量500万 以上の標準ポリスチレンについて分子鎖切断による 溶出位置の遅れが顕著に認められます。3及び5µm の充填剤では、線速度2.1cm/minと1.05cm/minを比較 した場合、分子量数十万以上の標準ポリスチレンか ら徐々に溶出位置の遅れが認められます。較正曲線

49

表1 各粒子径試作カラムによる分子量計算結果

1 . Polystyrene SRM706

Column	R.T(min)	Мр	Mn	Mw	Mz	
(A)	7.16	1.95E + 05	3.61E + 04	2.22E + 05	3.88E + 05	
(B)	13.58	2.30E + 05	9.73E + 04	2.48E + 05	4.03E + 05	
(0)	15.11	2.11E + 05	5.11E + 04	2.36E + 05	4.04E + 05	
(D)	15.76	1.95E + 05	7.95E + 04	2.44E + 05	4.51E + 05	
(E)	15.48	1.76E + 05	5.69E + 04	2.26E + 05	4.62E + 05	
A.V.		2.01E + 05	6.42E + 04	2.35E + 05	4.22E + 05	
S.T.D		2.02E + 04	2.42E + 04	1.12E + 04	3.27E + 04	
C.V.(%)		10.05	37.72	4.76	7.76	

2 . Poly (isobutylene)

Column	R.T(min)	Мр	Mn	Mw	Mz
(A)	6.26	1.23E + 06	1.32E + 05	1.08E + 06	1.86E + 06
(B)	11.92	1.34E + 06	4.18E + 05	1.16E + 06	1.94E + 06
(0)	13.65	1.03E + 06	2.74E + 05	1.15E + 06	2.17E + 06
(D)	14.37	1.10E + 06	2.43E + 05	1.19E + 06	2.25E + 06
(E)	14.24	7.29E + 05	6.69E + 04	1.02E + 06	2.45E + 06
A.V.		1.09E + 06	2.27E + 05	1.12E + 06	2.13E + 06
S.T.D		2.32E + 05	1.36E + 05	6.89E + 04	2.38E + 05
C.V.(%)		21.40	59.82	6.15	11.17

3 . Polycarbonate

Column	R.T(min)	Мр	Mn	Mw	Mz
(A)	7.9	4.25E + 04	1.64E + 04	4.10E + 04	6.08E + 04
(B)	15.25	4.14E + 04	2.05E + 04	4.23E + 04	6.22E + 05
(0)	16.64	4.32E + 04	1.68E + 04	4.48E + 04	6.86E + 04
(D)	16.8	5.39E + 04	1.66E + 04	4.80E + 04	7.82E + 04
(E)	16.67	4.53E + 04	1.78E + 04	4.52E + 04	7.98E + 04
A.V.		4.53E + 04	1.76E + 04	4.43E + 04	1.82E + 05
S.T.D		5.04E + 03	1.70E + 03	2.72E + 03	2.46E + 05
C.V.(%)		11.13	9.63	6.15	135.34

(A)試作カラムA(粒径3μm)
(B)試作カラムB(粒径5μm)
(C)試作カラムC(粒径13μm)
(D)試作カラムD(粒径20μm)
(E)試作カラムE(粒径30μm)
測定条件
Eluent : THF
Flow : 0.35ml/min
Temp. : 40
Inj Vol. : 35μl

の拡大図を図2に示します。

[2] 充填剤粒子径の測定分子量への影響

3種類の分布を持ったポリマー[Polystyrene SRM706(PS706), Poly (isobutylene)(PIB), Polycarbonate (PC)]の分子量測定を行った結果を表1に示します。 今回の各粒子径カラムでの分子量測定値は、粒子径 の小さなカラムと大きなカラムで分子量値が低く測 定される結果となりました。粒子径の小さなカラム では、分子鎖切断により溶出が遅れ、分子量値が低 く計算されているものと考えられます。また粒径の 大きなカラムでは、分離能が低下するためカラム外 での拡がりが影響しているものと考えられます。

以上の結果より、高分子分離用SuperHZM-Hの充填 剤粒子径を10µmとしました。

中低分子分離用SuperHZM-Mには、若干の高分子分離 用充填剤が必要であるため高分子分離用には5µmと 中低分子分離用には3µmと2つの粒子径の充填剤を 混合することとしました。SuperHZM-Nでは、分画分 子量範囲が分子鎖切断の影響を受けない領域である ため、これまでのグレードと同じ3µmの粒子径とし ました。

(50)

分離能の測定分子量への影響を確認するために高 分子分離用SuperHZM-Hのカラム本数を変えて [Polystyrene SRM706(PS706), Poly(isobutylene)(PIB)]の 分子量測定を行いました。図3に各測定で得られた 微分分子量分布曲線の重ね書きを示します。カラム 1本の測定では、ピークがブロードになり、低分子 側に広がっていることがわかります。正確な分子量 分布測定を行うためには少なくとも1万段以上の理 論段数が必要であり、各グレード毎に最低使用本数 を設定する必要があることがわかりました。

各カラムの最低使用本数は、各グレードのカラム 1本あたりの理論段数より、高分子分離用SuperHZM- Hでは3本、中低分子分離用SuperHZM-Mでは2本以 上としました。

今回、決定した仕様のカラムでの較正曲線を図4 に示します。いずれのカラムにおいても相関係数で 0.999以上であり、直線性に優れた較正曲線となって いることがわかります。

4.おわりに

今回、評価検討した3種のミックスグレードカラ ムがHZシリーズのラインナップに加わることで、幅 広い分子量のSEC測定で溶媒消費量の少ない、短 時間測定が実現できることになります。