

1. はじめに

クロロプレンゴム (CR) は、性能のバランスとコ ストパフォーマンスに優れ、中国やインド、東欧など 新興国市場における自動車、二輪車の生産拡大に伴い 需要が拡大している。

弊社では、クロロプレンゴム「スカイプレン[®]」の 生産・販売を行なっており、顧客のニーズや市場動向 にあわせたグレード開発および品質改良を続けてい る。

一方、近年注目されているセルロースナノファイ バー(CNF)は、植物の構成物質であるセルロース を工業的にナノレベルまで解きほぐしたものである。 CNFは、鋼鉄よりも強くて軽い材料として、樹脂と の複合材料への応用が期待されている。

CNF を樹脂に均一に分散させる方法としては① CNF 表面の疎水化¹⁾、② CNF のパウダー化²⁾、③ CNF の解繊と複合化を同時に実施する³⁾ などの方法 が考案されている。

また、ゴムへの複合化も検討されており、天然ゴム (NR)とCNFの複合材料は、引張応力が向上し、引 張強さ、破断伸びのバランスが良好であったと報告さ れている。⁴⁾

そこで我々は、CNF が均一に分散した CR 複合体を 得たるため、当社製品である CR の製造工程にて CNF を CR に複合化することを検討した。

本報では、それにより得られた CNF 複合化 CR の 物性について紹介する。これにより将来 CNF 複合化 CR が実用化されることで、二酸化炭素排出量の削減、 および木質系バイオマス資源の有効活用による森林保 全に貢献する。

2. CNF の複合状態

当社では、前述のように、CRの製造工程にて CNF 導入を検討した。CR はクロロプレンの単量体を乳化 重合により重合し、未反応の単量体等を除去して得る が、この際の条件の最適化を行った。図1に示すよう に、条件が適正でないと CNF が凝集して粗分散して しまうが、条件の最適化により CNF と CRの相溶性 をより高め、CNF が CR 中で均一に分散した複合体を 得た。

3. CNF 複合化クロロプレンゴムの物性

[1] ポリマー性状

CNF を複合化した CR は既存のスカイプレン製品と 同様のハンドリングが可能となるよう設計した。今回 作製したサンプルと最もポリマー性状が近いスカイプ レン B-30 との比較を表1に示す。揮発分、チップ形 状等は既存の CR と同等であり、原料ポリマーのムー

表1 ポリマー性状比較

項目	既存CR (B-30)	CNF 複合化 CR	
原料ゴム ムーニー粘度 ML(1+4)100℃	45~53 (製品規格)	51 (実測値)	
外観	白色または淡黄色		
形状	チップ状		
揮発分[%]	1.0 以下		
結晶化速度	中程度		

ニー粘度は重合条件を調整することで任意の値に設定 が可能である。

[2] 加工性

CNFを複合化した CR は既存のスカイプレン製品と 同様に使用できるよう設計してあるため、混練・成型・ 加硫工程に特別な配慮や工夫をすることなく使用可能 である。

表2に配合例を、図2にその加硫曲線を示す。加硫 挙動はほぼ同じであり、同等の加硫条件にて使用が可 能である。

[3] 配 合

CNFを複合化した CR は、既存 CR と比較して同配 合での硬さやコンパウンドの粘度が若干高くなった。 そのため補強剤としてのカーボンの低減等が可能であ る。

また、カーボンを減量することで加硫速度を維持し たままスコーチタイムを改善できる。**表2**に示した配 合(同配合および同硬度配合)で比較したコンパウン ド物性を**表3**および表4に示す。

[4] 加硫物性

上記のコンパウンドをプレス加硫し加硫シートおよ びブロックを作製、物性を評価した。加硫シートは 160℃×20分、ブロックは160℃×25分の条件で加 硫した。

			[phr]	
両ム対	同配合比較	同硬度比較		
旧口行门	既存CR/CNF複合化CR	既存CR	CNF 複合化 CR	
CR (B-30)	100	100	100	
MgO # 150	4	4	4	
ステアリン酸	0.5	0.5	0.5	
ワックス	1	1	1	
老化防止剤 ODPA	1	1	1	
老化防止剤 6PDD	0.5	0.5	0.5	
カーボンブラック FEF	40	—	_	
カーボンブラック HAF	—	40	_	
カーボンブラック SRF	—	—	40	
ナフテン油	7.5	7.5	7.5	
可塑剤 DOS	7.5	7.5	7.5	
ZnO#1	5	5	5	
加硫促進剤 ETU	1	1	1	
加硫促進剤 TMTD	0.5	0.5	0.5	

表2 ゴム配合表

表3 同配合のコンパウンド物性

項目		同配合比較		
			既存CR	CNF 複合化 CR
Hs		[JIS-A]	61	68
4.	ーニー粘度		37	40
ML	(1+4) 100°C		51	40
スコーチ	t5	[min.]	11.1	11.7
ML(1)125°C	t35	[min.]	17.8	18.4
加硫挙動	Max. S'	[dNm]	60.4	61.3
at 160°C	Tc90	[min.]	18.4	19.1

項目		同硬度比較		
			既存CR	CNF 複合化 CR
Hs		[JIS-A]	64	63
4.	ーニー粘度		37	33
ML	(1+4) 100°C			
スコーチ	t5	[min.]	6.9	13.4
ML(1)125°C	t35	[min.]	16.1	20.3
加硫挙動	Max. S'	[dNm]	57.1	55.7
at 160°C	Tc90	[min.]	19.8	19.3

表4 同硬度のコンパウンド物性

CNFは繊維径と繊維長のアスペクト比が高いこと から、得られた加硫ゴムシートは CNF の配向方向に より異なる物性を示した。CNF 複合化 CR の繊維に対 する方向と、既存のスカイプレン B-30 との比較を表 5 に示す。

CNFの正配向方向では低変位での引張応力、静的 せん断弾性率(Gs)、動的特性が向上した(同硬度配 合では維持)。一方、CNF反配向方向では、モジュラ スが低減し、屈曲耐久性が向上した。

			旺方でD	CNF複合化CR	
			₿№11 1 СК	正配向	反配向
引張物性					
	Hs	[JIS-A]	64	63	63
	TB	[MPa]	21.7	17.7	16.5
	EB	[%]	367	410	390
	M100	[MPa]	3.0	4.3	2.7
	M200	[MPa]	8.7	7.5	6.3
	M300	[MPa]	16.9	13.0	11.8
	TR-B	[N/mm]	54	53	51
	Gs=25	[MPa]	1.18	1.68	1.14
耐熱老朽化性	E (100℃×3日)				
	Hs 変化	[Point]	+6	+4	+4
	TB 変化	[%]	+5	± 0	-2
	EB 変化	[%]	-13	-14	-12
圧縮永久歪み	(100℃×3 日)	[%]	30	24	33
デマッチャ耐久性試験					
	亀裂成長	[回]	280	840	1090
	亀裂発生	[万回]	130	100	380
動的特性(静歪 5%、動歪 0.5%、10Hz)					
E'	25°C	[MPa]	12.55	9.39	7.21
	75℃	[MPa]	8.56	7.41	5.69
$\tan \delta$	25℃		0.215	0.148	0.150
	75℃		0.143	0.099	0.085

表5 加硫物性の同硬度比較

4. 実用化に向けた検討

ラボにおける小スケール検討にて良好な物性が得られたことから、実機を想定したスケールアップの検討 を現在実施中である。

現在ラボ検討の約1000倍スケールに拡大し、CNF の複合化を実施しているが、ラボ品と同等の加硫ゴム 物性が得られている。 スケールアップ品も CNF の分散状態が良好である ことも確認しており、自動化など多少の設備投資は必 要ではあるが、実機での生産に大きな問題は無い。

5. おわりに

本稿で紹介した CNF を複合化した CR は、既存の CR と同様に使用可能でありながら、配合設計の幅を 広げ、高性能配合、低 / 高充填配合等を可能とするこ とができる。また、ナノファイバーの配向性を制御す ることで、配向方向に応じた力学物性が得られる。さ らに、当社の保有する CR 重合技術を用いて、CNF 複 合化に特化したタイプの新たなスカイプレン製品も検 討中である。今後も引き続き顧客ニーズを取り入れ、 グレード設計を実施していく。

また、当社ではスカイプレンだけでなく、CRより も耐候性・耐熱性に優れるクロロスルホン化ポリエチ レン (CSM) およびアルキル化クロロスルホン化ポ リエチレン (extos[®]) を保有している。これらのゴム に対しても、CNFの複合化による更なる高性能化可 否を検討している。

今後も引き続き、環境に優しく高性能な製品ライン ナップを取り揃えて社会に貢献する事業を展開してい きたいと考える。

6. 参考文献

- 1) 富岡恒憲、日経 x TECH、セルロースナノファ イバー (CNF) (2013)
- 2) 佐藤明弘、工業材料、65(8)、64-65(2017)
- 3) 仙波健、工業材料、65(8)、29-34(2017)
- 4) 長谷朝博、セルロースナノファイバーの均一分散 と複合化、305-317 (2018)