ジルコニア微粉末の焼結挙動に及ぼす添加物の効果: アルミナとシリカ添加の比較

松井光二

Effects of additives on sintering behavior of fine zirconia powder : comparison between alumina and silica additions

Koji MATSUI

The sintering behavior of 3 mol% Y_2O_3 ·doped ZrO₂ powders with and without a small amount of Al_2O_3 or SiO₂ was investigated to clarify the difference in the effects of their additives on the initial sintering stage. The shrinkage behavior of powder compact was measured under constant rates of heating (CRH). The sintering rate remarkably increased by a small amount of Al_2O_3 or SiO₂ addition, and the enhanced sintering effect by Al_2O_3 addition was greater than that by SiO₂ one. The apparent activation energy (nQ) and apparent frequency factor ($\binom{n}{0}$), where the n is the order depending on diffusion mechanism, were estimated at the initial sintering stage by applying the sintering rate equation to the CRH data. The diffusion mechanism changed from grain-boundary diffusion to volume diffusions by Al_2O_3 or SiO₂ addition. Both nQ and $\binom{n}{0}$ increased in the order of $Al_2O_3 > SiO_2 >$ no additions. It is, therefore, concluded that the sintering rate increases in the order of $Al_2O_3 > SiO_2 >$ no additions because the increase in $\binom{n}{0}$ rather than nQ is predominant.

1. Introduction

Due to its excellent mechanical properties (i.e., high strength and fracture toughness), Y_2O_3 ·stabilized tetragonal ZrO₂ polycrystal (Y·TZP) has become an important structural ceramic, finding use in optical fiber connectors, grinding media, and precision parts. The mechanical properties strongly depend on the microstructure in Y·TZP, which can be controlled by applying the sintering-acceleration effect of additive. The appearance of high-performance Y·TZP for new application is desired to spread the zirconia-product market. To develop high-performance Y·TZP powder, it is needed to clarify the effect of various additives on the sintering mechanism of Y·TZP powder.

The initial sintering mechanism of various ceramic powders has been investigated extensively.^{1)·14)} For instance, Young and Cutler¹⁾ have derived sintering-

rate equations that is applicable to shrinkage data measured under constant rates of heating (CRH), and estimated the activation energy for causing diffusion at the initial sintering stage in Y_2O_3 -stabilized ZrO_2 . Wang and Raj^{2), 3)} have investigated the densification behavior in Al₂O₃, ZrO_2/Al_2O_3 composite, and ZrO_2 containing Y_2O_3 by the CRH method. Thus far, the author has kinetically investigated the initial sintering mechanism in Y_2O_3 -doped ZrO_2 powders with and without 0.25 mass **%** Al₂O₃, and clarified the following points. ⁴⁾⁻⁸⁾

- Al₂O₃ effect: Al₂O₃ changes the diffusion mechanism from grain-boundary (GBD) to volume diffusions (VD) at the initial sintering stage.⁴⁾⁻⁶⁾ As a result, the densification is enhanced because the apparent frequency-factor term in the rate constant increases.⁶⁾
- ii) Specific surface area effect: when the specific surface area in Y₂O₃ doped ZrO₂ powder increases,

the sintering rate is enhanced because of an increase in frequency-factor term.⁷⁾

iii) Y₂O₃ concentration effect: the increase in Y₂O₃ concentration decreases the sintering rate because of increasing the activation energy of diffusion.⁸⁾

Furthermore, the author also proposed an analytical method that can experimentally determine the diffusion mechanism at the initial sintering stage using CRH data, and demonstrated the validity of the analytical method using Y_2O_3 -doped ZrO₂ powders with and without 0.25 mass **%** Al₂O₃.^{4),5)}

From the industrial standpoint, it is important to clarify the roles of various additives which accelerate sintering in Y \cdot TZP. Usually, not only Al₂O₃ but also SiO₂ is well used as one of the additives. As described in the above-mentioned, the effect of Al₂O₃ on the initial sintering stage in Y·TZP powder has been reported in previous papers.^{4),6)-8)} For the effect of SiO₂, the superplasticity behavior and microstructure development in SiO₂ · doped Y · TZP has been investigated previously.¹⁵⁾⁻¹⁸⁾ However, the effect of SiO₂ addition on the initial sintering stage of Y-TZP powder has not been reported in the previous papers. Furthermore, although Al₂O₃ and SiO₂ are well used as additives which enhance the sintering rate in Y-TZP powder, the difference in their effects is not quantitatively discussed.

In the present study, Al_2O_3 and SiO_2 as additives were noted, and the initial sintering behavior of Y-TZP powders with and without Al_2O_3 or SiO_2 was analyzed by the CRH method. The difference in the enhanced sintering effect of these additives was quantitatively discussed based on the present analytical results.

2. Experimental procedure

[1] Specimen preparation

3 mol% (5.2 mass%) Y·TZP powder with a specific surface area of 15 m²/g (TZ·3Y grade, Tosoh, Tokyo, Japan), colloidal SiO₂ (Snowtex, Nissan Chemical Industries, Tokyo, Japan) with a particle size in the range of 10·20 nm, and fine AI_2O_3 powder (Alu C grade, Tokyo, Nippon Aerosil, Japan) with a specific surface area of *ca.* 100 m²/g were used as starting materials. The Y·TZP powder with 0.25 mass% AI_2O_3 (3YA) or SiO₂ (3YC) was prepared by wet·milling the Y·TZP powder and colloidal SiO₂ or Al₂O₃ powder with a vibration mill. The atomic ratios of Al/(Zr + Y) and Si/(Zr + Y) of these powders are 6×10^{-3} and 5×10^{-3} , respectively, which are roughly equal. For comparison with the sintering behavior of 3YA and 3YC, the Y-TZP powder without Al₂O₃ or SiO₂ (3Y) was also treated by wet-milling under the same process.

These powders were pressed uniaxially into a disk under 70 MPa. The powder compacts were *ca*. 25mm \oslash × 4mm in size, and sintered at 1100 ° 1500 for 2 h in air (heating rate 100 /h).

[2] Density and grain-size measurements

The density of sintered bodies was measured using the Archimedes method for the relative densities of \geq 80 %, whereas calculated from the weight and the size for the relative densities of < 80 %. A scanning electron microscopy (SEM; Model S-4500, Hitachi, Tokyo, Japan) was used to observe the microstructure and estimate the average grain sizes of sintered bodies. SEM specimens were polished with a diamond paste of 3 µm, and then thermally etched in air for 1 h at a 50 lower temperature than the sintering temperature of each specimen. The average grain size was measured by the Planimetric method.¹⁹

[3] CRH measurements

The powders were pressed uniaxially into a cylindrical disk under ca. 100 MPa and afterwards pressed isostatically at 200 MPa by cold isostatic pressing. The specimen was 6 mm \oslash × 15 mm. The shrinkage of the powder compacts obtained with sintering was measured using a dilatometer (Model DL 9700, ULVAC - RIKO, Yokohama, Japan). The shrinkage measurements by the CRH technique were performed in the range from room temperature to 1500 heating rates of 5 °, 10 °, 15 °, and 20 /min in air. When the temperature reached 1500 , the specimens were cooled at a constant rate. The dilatometer was calibrated using sapphire as a standard specimen. Thermal expansion of each specimen was corrected by the same method in the previous paper.⁴⁾ It was confirmed that the shrinkage proceeded isotropically because for each measured specimen, the shrinkage percentage of length axis was nearly equal to that of diameter axis. Assuming isotropic shrinkage to powder compact, the density (T) at a given temperature T is given by the following equation²:

$$(T) = \left(\frac{L_f}{L(T)}\right)_f^{3}$$
(1)

where L_f and L(T) are the final length and the length at a *T* of the specimen, respectively. f indicates the final density measured by the Archimedes method. The (*T*) at a *T* was calculated using Eq. (1).

[4] Analysis of initial sintering mechanism

The material-transport path and activation energy of diffusion at the initial sintering stage were determined by the same analytical method as the previous paper.⁵⁾ The sintering-rate equation at the initial sintering stage is given by the following equation⁹⁾:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\left(\frac{L}{L_0} \right)^{1/n} \right] = \frac{K_s}{k T a^p} \tag{2}$$

where $L(=L_0 \cdot L)$ is the change in length of the specimen, L_0 the initial length of the specimen, K the numerical constant, s the surface energy, the atomic volume, D the diffusion coefficient, t the time, Tabsolute temperature, k the Boltzmann's constant, a the particle radius, and the parameters of n and p the order depending on the diffusion mechanism. The values of pfor GBD and VD are 4 and 3, respectively. The value of K includes the effective grain boundary width in GBD.¹⁰⁾ Equation (2) is applicable to the fractional shrinkages of < 4% that satisfy the initial sintering condition.

The following sintering-rate equation that is applicable to CRH data is derived from Eq. (2).⁵⁾

$$\ln\left[T\left(\frac{\mathrm{d}T}{\mathrm{d}t}\right)\left(\frac{\mathrm{d}}{\mathrm{d}T}\right)\right] = \cdot \frac{Q}{RT} + (n, p)$$
(3)

where

$$(n, p) = \ln \left[f(n, n) \right] + \ln \left[\frac{K_{s} D_{0}}{k} \right] p \ln a$$
 (4)

Here, *Q* is the activation energy, *R* the gas constant, f(, n) the density function that depends on the *n*, and D_0 the pre-exponential term defined as $D=D_0\exp(\cdot Q/RT)$. Equation (3) corresponds to the sintering-rate equation derived by Wang and Raj.² Using the slope S₁ of the Arrhenius-type plot of $\ln[T(dT/dt)(d /dT)]$ against 1/T at the same density, the *Q* is expressed as

$$Q = -RS_1 \tag{5}$$

On the other hand, the following sintering-rate

equation that is different from the type of Eq. (3) is also derived from Eq. (2).⁵⁾

$$\frac{\mathrm{d}(L/L_0)}{\mathrm{d}T} = \left(\frac{K_{\rm s}}{ka^p cQ}\right)^n \left(\frac{nQ}{RT^{2\cdot n}}\right) \cdot \exp\left(\frac{nQ}{RT}\right) \quad (6)$$

Here, *c* is the heating rate (i.e., *c*=d*T*/d*t*). For *n*=1/3 and *n*=1/2, Eq. (6) corresponds to the sintering equations derived by Young and Cutler.¹⁾ This rate equation is also applied to CRH data. Using the slope S_2 of the Arrhenius-type plot of $\ln[T^{2\cdot n}d(L/L_0)/dT]$ against 1/*T*, the apparent activation energy (*nQ*) is expressed as

$$nQ = \cdot RS_2 \tag{7}$$

Here, the *n* is in the range of $0.31 \cdot 0.50$.¹⁰⁾ In the previous paper, the author has reported that the values of *nQ* in 3 mol **%** (5.3 mass**%**) Y·TZP powder with a specific surface area of 6.7 m²/g determined from Arrhenius·type plots that correspond to *n*=1/3(=0.33) and *n*=1/2(=0.50) were 219 and 217 kJ/mol, respectively.⁴⁾ This result suggests that the *nQ* is nearly the same value in the *n* range of 0.31·0.50. Therefore, the S_2 can be estimated as the approximate value from the Arrhenius·type plot of $ln[T^{1.6}d(L/L_0)/dT]$ against 1/*T* that corresponds to *n*=0.4 that is the central value of *n*=0.31·0.50.⁵⁾ Combining Eqs.(5) and (7), the following equation is obtained⁵⁾:

$$n = \frac{nQ}{Q} = \frac{S_2}{S_1} \tag{8}$$

In the present analysis, the Q and *n* were determined in the fractional shrinkage range of <4 % that satisfies the initial sintering condition as with previous papers.^{4),5)} In previous papers, the author analyzed the isothermal shrinkage behavior of Y ·TZP powders with and without a small amount of AI_2O_3 , and showed that the logarithm shrinkage ·logarithm time (log ·log) plots in the shrinkage range of < 4% measured at various constant temperatures became the linear relationships.⁶⁾⁻⁸⁾ At the initial sintering process with particle growth, it has been reported that the log ·log plot show no linear relationship.¹¹⁾ Therefore, the influence of particle growth on the *Q* and *nQ* is negligibly small in the shrinkage range of < 4%.

3. Results

[1] Densification and grain growth

Figure 1 shows the change of relative density in 3Y

Fig. 1 Changes of relative density and average grain size in 3Y, 3YA, and 3YC with sintering temperature. The duration time at each sintering temperature is 2 h. (), (), and () indicate 3Y, 3YA, and 3YC, respectively.

(without additive), 3YA (with 0.25 mass% Al₂O₃), and 3YC (with 0.25 mass% SiO₂) with sintering temperature. The relative density of 3YC was higher than that of 3Y at lower temperatures. The relative density of 3YA was higher than that of 3YC at lower temperatures, and attained 99.5 % at 1350 . This result reveals that the densification of Y · TZP powder is accelerated by Al₂O₃ or SiO₂ addition, and the acceleration effect by Al₂O₃ addition is greater than that by SiO₂ one. Figure 2 shows SEM images of the polished and etched surfaces of 3Y, 3YA, and 3YC sintered at 1500 . The average grain sizes of 3Y, 3YA, and 3YC were nearly equal, and in the range of 0.5-0.6 µm. This result suggests that at the sintering-hold time of 2h, the effect of Al₂O₃ or SiO₂ addition did not appear for the grain growth process.

Fig. 2 Scanning electron microscopy images of 3Y, 3YA, and 3YC sintered at 1500 . The duration time at each sintering temperature is 2 h.

[2] Densification behavior

Figure 3 shows the changes of the shrinkage of 3Y, 3YA, and 3YC with temperature in the course of 10 /min heating. As can be seen in Fig. 3(a), the starting

Fig. 3 Temperature dependence of shrinkage, relative density (), and densification rate (d /dT) of 3Y, 3YA, and 3YC in the course of heating (10 /min). (), (), and () indicate 3Y, 3YA, and 3YC, respectively.

35

temperature of 3Y, 3YA, and 3YC is nearly equal, and the shrinkage increased in the order of 3YA > 3YC > 3Y at temperatures of > ~1100 . Using the shrinkage curves in Fig.3(a), the temperature changes of the relative density () and the densification rate (d /dT)

were determined by Eq.(1) (Figs.3(b) and (c)). The was high in the order of 3YA > 3YC > 3Y at temperatures of > ~1100 . The d /d*T* increased in the order of 3YA > 3YC > 3Y when the temperature exceeded ~1100 , and the temperature of peak maximum of the d /d*T* curve became low in the order of 3YA < 3YC < 3Y. The heating rate dependence of d /d*T* in each specimen was also examined in the range of 5 °-20 /min. For all specimens, the d /d*T* curves shifted to a higher temperature, as the heating rate increased. As an example, the heating rate dependence of 3YC is shown in Fig. 4. The present results reveal that Al_2O_3 or SiO_2 addition enhances the d /d*T*, and the enhanced effect by Al_2O_3 addition is greater than that by SiO_2 one.

[3] CRH shrinkage analysis

In previous papers, the author reported the initial sintering mechanisms in Y-TZP powders with and without 0.25 mass% AI_2O_3 .^{4),6)-8)} However, the initial sintering mechanism of 3YC (with 0.25 mass% SiO_2) has not been reported previously. Therefore, the initial sintering behavior of 3YC is analyzed to clarify the difference between the sintering-acceleration effects by

Fig. 4 Temperature dependence of densification rate (d /d7) of 3YC at various heating rates. (), (), and () represent 5 °, 10 °, and 20 /min heating rates. The data measured at a 15 /min heating rate were also obtained in a similar manner.

 AI_2O_3 and SiO_2 additions. The Q, nQ, and n of diffusion at the initial sintering stage in 3YC can be estimated by applying Eqs. (3), (6), and (8) to the results in Figs. 3 and 4. Equation (3) is applied in the following way. For each heating rate (dT/dt), both T and d /dT at the same were determined, and their values were plotted as T(dT/dt)(d / dT) against 1/T (Fig. 5). Here, this analysis was performed in the range of < 54 % that corresponds to the fractional shrinkage range of < 4 %. The plot at each showed the linear relation because the values of correlation coefficient were in the range of $\cdot 0.95$ to $\cdot 1.0$. The Q at each was determined from the slope of the straight line (Fig. 6). The average

Fig. 5 Arrhenius-type plots of 3YC for the estimate of activation energies of sintering. (), (), (), (), and () represent 50%, 51%, 52%, 53%, and 54% relative densities, respectively. The data of 50.5%, 51.5%, 52.5%, and 53.5% relative densities were also obtained in a similar manner.

Fig. 6 Activation energies for diffusion of 3YC in the relative density of 50-54%.

value of Q in this range was 579 kJ/mol (standard deviation ()=28 kJ/mol). On the other hand, Eq. (6) is applied in the following way. In the fractional shrinkage range of < 4 %, the nQ was determined from the slope of the straight line in the plot of $\ln[T^{1.6}d(L/L_0)/dT]$ against 1/T using the shrinkage curve of each dT/dt. As an example, the plot at a dT/dtof 10 /min is shown in Fig.5. It is seen that the plot shows the linear relation. The linear relations were obtained at all plots of $5 \cdot 20$ /min heating rates. Determining the average value of nQ, 280 kJ/mol (=6 kJ/mol) was obtained. Using the average values of both Q and nQ, the n was determined by Eq. (8), which was n=0.5(=1/2). According to two-sphere shrinkage models, the *n* ranges of GBD and VD are 0.31-0.33 and 0.40.0.50, respectively.¹⁰⁾ Therefore, the diffusion mechanism of 3YC was assigned to VD. This diffusion mechanism (i.e., n=1/2) agreed with that of Al₂O₃ addition in previous papers.4)-8)

To clarify the difference between AI_2O_3 and SiO_2 effects on the sintering rate, the *Q* and frequency factor (that is defined by the following ₀) of each specimen are estimated using Eq. (6). Putting as $_0 = (K_S D_0)/(ka^p)$, Eq. (6) is expressed by

$$\frac{\mathrm{d}(L/L_0)}{\mathrm{d}T} = {}_0^n \cdot \left(\frac{R}{CQ}\right)^n \cdot \left(\frac{nQ}{RT^{2\cdot n}}\right) \cdot \exp\left(\cdot \frac{nQ}{RT}\right) \quad (9)$$

In previous papers, the author reported that the orders depending on the diffusion mechanism of Y-TZP powder with and without 0.25 mass% Al_2O_3 were n=1/2 and n=1/3, respectively,^{4),6-8)} which can be applied as the orders for 3Y and 3YA. In the above result, the

order of 3YC is n=1/2. Using each value of n, Eq. (9), and the shrinkage data (of < 4 %) of $5 \cdot 20$ /min heating rates, the average values of Q were determined from the slopes of the straight lines in the plots of $\ln[T^{5/3}d(L/L_0)/dT]$ against 1/T for 3Y (n=1/3) and $\ln[T^{3/2}d(L/L_0)/dT]$ against 1/T for 3YA and 3YC (n=1/2). Each $_{0}$ was determined from the intercept of the plot using the determined Q. As an example, each plot at a 10 /min heating rate is shown in Fig. 8. Here, although the Q of 3YC has been already determined from the result in Fig. 6, it was reestimated using Eq. (9) to strictly comparable with Qs of 3Y and 3YA. The obtained results are shown in Table **1**. The Q increased in the order of 3Y > 3YA > 3YC. Similarly, the $_{0}$ also increased in the order of 3Y > 3YA > 3YC. In previous papers, the author determined

Fig. 7 Plot of $\ln[T^{1.6}d(L/L_0)/dT]$ against 1/T of 3YC in the course of heating (10 /min).

Fig. 8 Plots of In[$T^{5/3}$ d(L/L_0)/dT]against 1/T in 3Y and In[$T^{3/2}$ d(L/L_0)/dT]against 1/T in 3YC in the course of heating (10 /min). (), (), and () indicate 3Y, 3YA, and 3YC, respectively.

Specimen	Activation energy*		Frequency factor*			Apparent activation energy		Apparent frequenecy factor		
	Q (kJ/mol)	Standard deviation	In[₀, (s ^{.1})]	Standard deviation	<i>nQ</i> (kJ/mol)	Standard deviation	In [ⁿ ₀ , (s ^{.n})]	Standard deviation
3Y	681	17		51.4	1.5	227	6		17.1	0.5
3YA	589	7		46.1	0.6	295	4		23.0	0.3
3YC	558	13		43.0	1.1	279	6		21.5	0.5

Table Apparent activation energies, apparent frequency factors, activation energies, and frequency factors for diffusion at initial sintering stage

* The values of Q and \ln_0 were calculated from the values of nQ and \ln_0^n using n=1/3 for 3Y and n=1/2 for 3YA and 3YC.

the values of *Q* for sintering of 3 mol% (5.1-5.3 mass%) Y-TZP powders by the CRH and isothermal shrinkage analyses to be 535-595 with 0.25 mass% AI_2O_3 and $647 \cdot 694$ kJ/mol without AI_2O_3 .^{4),6-8)} Furthermore, the author also reported that the values of In[$_0$, (s⁻¹)] of 3Y and 3YA determined by the isothermal shrinkage analysis were 48.2 and 45.7, respectively.^{6),8)} Compared with these values, the values of *Q* and $_0$ in 3Y, 3YA, and 3YC determined by the present analytical method are considered to be reasonable. It is, therefore, clarified that the difference in the sintering rate by AI_2O_3 and SiO_2 additions occurs by differences in both *Q* and $_0$ at the initial sintering stage.

4. Discussion

[1] Effects of additives on the sintering rates

Based on the kinetic analysis, the effects of Al_2O_3 and SiO_2 additions on the initial sintering stage are discussed as follows. The integral type of Eq. (6) is given by the following equation.⁵⁾

$$\begin{pmatrix} \frac{L}{L_0} \end{pmatrix} = \left(\frac{K_s}{ka^{\rho}cQ} \right)^n T^n \exp\left(-\frac{nQ}{RT}\right)$$

= $\binom{n}{0} \left(\frac{RT}{cQ} \right)^n \exp\left(-\frac{nQ}{RT}\right)$ (10)

Under the same diffusion mechanism (namely, a constant *n*), the decrease in $_0$ under a constant *Q* and *T* or the increase in *Q* under a constant $_0$ and *T* leads to the decrease in the L/L_0 , which corresponds to the decrease in the sintering rate. As shown in Fig. 3, the shrinkage, , and d /d*T* of 3YA were greater than that of 3YC when the temperature exceeded ~1100 . As can be seen the result in Table , both *Q* and $_0$ of 3YA are greater than those of 3YC. It is, therefore, concluded that the sintering rate of 3YA increases more than that of 3YC at temperatures of > ~1100 because the increase in $_0$ rather than *Q* is predominant.

According to Eq. (10), the magnitude of *n* should be considered when the diffusion mechanism changes. The *nQ* and apparent frequency factor $\begin{pmatrix} n \\ 0 \end{pmatrix}$ were determined using the above *Q* and $_0$, respectively (Table). Both *nQ* and $_0^n$ increase in the order of 3YA > 3YC > 3Y. As can be seen from the result in Fig. 3, when the temperature exceeded ~1100 , the sintering rate increases in the order of 3YA > 3YC > 3Y. It is, therefore, concluded that the sintering rate increases in the order of 3YA > 3YC > 3Y at temperatures of > ~1100 because the increase in $_0^n$ rather than *nQ* is predominant. Thus, the sintering rate is controlled by not only the *Q* and $_0$ but also the *n*.

[2] Mechanism of GBD VD change by additive

In the previous paper, the author reported that the mechanism of GBD VD change by AI_2O_3 addition is reasonably explained as follows.⁶⁾ Added AI_2O_3 particles begin to dissolve in Y·TZP particles with neck formation and growth, and a part of the dissolved AI^{3+} ions segregates at grain boundaries formed between Y·TZP particles. When AI^{3+} ions segregate at grain boundaries, the grain·boundary energy (_{GB}) decreases, which is led to the change of diffusion mechanism from GBD to VD.

The similar discussion is available for the GBD VD change by SiO₂ addition. Ikuhara *et al.*¹⁵⁾ have reported that the dynamic behavior with heating of 2.5 mol% Y-TZP particles (Tosoh) to which SiO₂ particles with the diameter of 10 nm (Nissan Chemical Industries) was added was observed using *in* · *situ* observation technique by a transmission electron microscopy, and most of the SiO₂ particles in the mixed state were adsorbed into the ZrO₂ grains at ~1300 . Furthermore, they showed that no amorphous layer exists along the grain ·boundary faces in SiO₂ ·doped Y ·TZP, but Y³⁺ and Si⁴⁺ ions segregate at grain boundaries over widths

of 4.6 and 5.8 nm, respectively.¹⁶⁾ Taking into account their observations,^{15),16)} it is presumed that added SiO₂ particles begin to dissolve in Y-TZP particles with neck formation and growth, dissolved Si4+ ions diffuse to Y-TZP particle interior within the range of solubility, and a part of the dissolved Si4+ ions segregate at grain boundaries formed between Y-TZP particles. In the result in Fig. 1, a part of added SiO₂ has already dissolved in ZrO_2 particles at the temperature of ~ 1100 , which is consistent with their result.¹⁵⁾ Furthermore, it has been reported that when Si⁴⁺ ions segregate at grain boundaries in 2.5 mol% Y.TZP, the _{GB}/ _s relatively decreases.²⁰⁾ It is, therefore, concluded that the diffusion mechanism changes from GBD to VD because the GB decreases by the grainboundary segregation of Si⁴⁺ ions.

[3] Effects of additives on the activation energy and frequency factor

Sakka et al. have reported that the cation diffusion in the Y_2O_3 and $CeO_2 \cdot (Zr_{1,x}Hf_x)O_2$ systems is much smaller than the oxygen diffusion.^{21),22)} Therefore, the sintering rate in Y-TZP powders with and without a small amount of additive is controlled by the cation diffusion. In the previous paper, the author reported that the differences in both Q and $_0$ between 3Y and 3YA (i.e., Q(3Y) > Q(3YA) and $_0(3Y) > _0(3YA)$) can be explained by the grain boundary segregation of Y3+ ions and the difference in cation-vacancy (V_{7r}) concentrations between grain-boundary vicinity and particle interior.⁶⁾ The difference in Q of VD between 3YA and 3YC (i.e., Q(3YA) > Q(3YC)) is discussed as follows. When Al₂O₃ dissolves to Y·TZP, the oxygen vacancy (Vo) is produced by the doping reaction in the following equation.

$$AI_2O_3 + 2Zr_{Zr}^{x} + O_0^{x}^{ZrO_2} 2AI_{Zr}' + V_0 + 2ZrO_2(11)$$

On the other hand, when SiO_2 dissolves to Y-TZP, the V_0 is not produced as shown in the following doping-reaction equation.

$$SiO_2 + Zr \frac{z}{Zr} Si \frac{z}{Zr} + ZrO_2$$
 (12)

The cation diffusion proceeds primarily through cation vacancies $(V_{zr}^{'''})$ of the schottky-defect type. The formation of schottky defect is expressed by the following equilibrium reaction.

$$null = V_{Zr}^{''''} + 2V_{O}$$
 (13)

This equilibrium reaction means that when the Vo concentration increases, the V₇^m concentration decreases according to the law of mass action. Furthermore, when the V_{0} concentration increases, because V_o associates with V_{zr} owing to coulombic attractive force, this associated V_{Zr}^m does not work for the cation diffusion. The decrease in V_{zr}^m concentration and the association between V_{Zr}^{m} and V_{O} retard the cation diffusion. When Al₂O₃ dissolves to Y-TZP, the cation diffusion is depressed because the V_{o} produces, and the depressing effect appears as the increase in the Q of VD. The dissolution of SiO_2 to Y · TZP hardly influences the cation diffusion because the V_{Ω} does not produce. Therefore, the Q of VD in Al₂O₃ addition is larger than that in SiO₂ one. The present results reveal that the Q of VD in 3YA is higher than that in 3YC (Table), which is consistent with the conclusion in the above discussion. Therefore, the Q difference of VD between 3YA and 3YC can be qualitatively interpreted by the difference in the amount of $V_{\rm O}$ that is produced by the segregated dissolution of Al₂O₃ or SiO₂ at Y · TZP grain boundaries.

The difference in $_{0}$ of VD between 3YA and 3YC (i.e., $_{0}(3YA) > _{0}(3YC)$) is discussed as follows. According to the random walk theory, the D_{0} in the extrinsic region is given by the following equation.²³⁾

$$D_0 = \frac{1}{6}B^{-2}N_{\rm V}\exp\left(\frac{S}{R}\right) \tag{14}$$

Here, *B* is the constant that depends on the crystal structure, the frequency of atom, the space between crystal planes, $N_{\rm v}$ the vacancy concentration, S the activation entropy. When the diffusion and mechanism changes from GBD to VD by dissolution of AI_2O_3 , the V_{Zr}^{m} concentration decreases (i.e., the decrease in $N_{\rm V}$) because the V_o is formed. On the other hand, the formation of V_0 causes the increase in $s^{.6}$ In the case of SiO₂ addition, the V^m_{Zr} concentration does not change and the s change is small in comparison with AI_2O_3 addition because the V_O is not produced by the doping reaction of SiO₂. Substituting Eq. (14) into $_{0} = (K_{S} D_{0})/(ka^{P})$ and then taking $_{0}(3YA)/_{0}$ (3YC), one obtains

$$\frac{_{0}(3YA)}{_{0}(3YC)} \cong \left(\frac{_{s}(3YA)}{_{s}(3YC)}\right) \left(\frac{N_{v}(3YA)}{N_{v}(3YC)}\right)$$
(15)

As discussed in Section IV. (1), the increase of sintering rate by AI_2O_3 or SiO_2 addition largely depends on the increase of n_0^n , i.e., the increase in *n* with GBD

VD change, though the nQ also increases by AI_2O_3 or SiO_2 addition. Therefore, the kinetic process of VD is faster than that of dominant GBD by the segregated dissolution of AI_2O_3 or SiO_2 at Y·TZP grain boundaries. Furthermore, the increase in $\binom{n}{0}$ depends primarily on the increase in $\underset{s}{s}$, which corresponds to the increase in V_0 . It is, therefore, explained that the sintering rate of 3YA is greater than that of 3YC because of the increase in V_0 produced by dissolution of AI_2O_3 .

5. Conclusions

In the present study, the effects of AI_2O_3 and SiO_2 addition on initial sintering of Y · TZP powder manufactured by the hydrolysis process were investigated. The following conclusions were obtained: (1) The sintering rate of Y · TZP powder remarkably increased by a small amount of AI_2O_3 or SiO_2 addition, and the enhanced sintering effect by AI_2O_3 addition was greater than that by SiO_2 addition. AI_2O_3 or SiO_2 addition affected little the grain · growth process at the hold · time condition in the present sintering profiles.

(2) The nQ and $_{0}^{n}$ at the initial sintering stage were estimated by applying the sintering-rate equation to the CRH data. The diffusion mechanism changed from GBD to VD by Al₂O₃ or SiO₂ addition. Both nQ and $_{0}^{n}$ increased in the order of 3YA > 3YC > 3Y. It is, therefore, concluded that the sintering rate increases in the order of 3YA > 3YC > 3Y because the increase in

 $_{0}^{n}$ rather than nQ is predominant. This enhanced sintering mechanism is reasonably interpreted by the segregated dissolution of Al₂O₃ or SiO₂ at Y·TZP grain boundaries.

(3) The present analytical method derived based on the

sintering kinetics at CRH is very useful for determination of the diffusion mechanism at the initial sintering stage of ceramic powders.

Acknowledgement

The author would like to express his sincere thanks to Professor Junichi Hojo, Kyushu University, for his valuable advice in this work.

References

- 1) W.S.Young and I.B.Cutler, *J.Am.Ceram.Soc.*, 53 (12), 659(1970)
- **2**) J.Wang and R.Raj, *J.Am.Ceram.Soc.*, 73(5), 1172(1990)
- **3**) J.Wang and R.Raj, *J.Am.Ceram.Soc.*, 74(8), 1959(1991)
- 4) K.Matsui, N.Ohmichi, M.Ohgai, N.Enomoto, and J.Hojo, J.Am.Ceram.Soc., 88(12), 3346(2005)
- 5) K.Matsui, K.Tanaka, N.Enomoto, and J.Hojo, *J.Ceram.Soc.Jpn.*, 114(9), 763(2006)
- 6) K.Matsui, T.Yamakawa, M.Uehara, N.Enomoto, and J.Hojo, *J.Am.Ceram.Soc.*, 91(6), 1888(2008)
- 7) K.Matsui, A.Matsumoto, M.Uehara, N.Enomoto, and J.Hojo, *J.Am.Ceram.Soc.*, 90(1), 44(2007)
- 8) K.Matsui, K.Tanaka, T.Yamakawa, M.Uehara, N.Enomoto, and J.Hojo, *J.Am.Ceram.Soc.*, 90(2), 443(2007)
- **9**) Y.Moriyoshi and W.Komatsu, *Yogyo-Kyokai-Shi*, 79(10), 370(1971)
- 10) D.L.Johnson, *J.Appl.Phys.*, 40(1), 192(1969)
- 11) Y.Moriyoshi and W.Komatsu, *J.Am.Ceram.Soc.*, 53(12), 671(1970)
- 12) D.L.Johnson and I.B.Cutler, *J.Am.Ceram.Soc.*, 46(11), 541(1963)
- 13) D.L.Johnson and I.B.Cutler, *J.Am.Ceram.Soc.*, 46(11), 545(1963)
- 14) H.Su and D.L.Johnson, J.Am.Ceram.Soc., 79(12), 3211(1996).
- 15) Y.Ikuhara, Y.Nagai, T.Yamamoto, and T.Sakuma, Interface Science, 7, 77(1999)
- 16) Y.Ikuhara, P.Thavorniti, and T.Sakuma, Acta. Mater., 45(12), 5275(1997)
- 17) J.Zhao, Y.Ikuhara, and T.Sakuma, *J.Am.Ceram. Soc.*, 81(8), 2087(1998)

- 18) P.Thavorniti, Y.Ikuhara, and T.Sakuma, *J.Am. Ceram.Soc.*, 81(11), 2927(1998).
- 19) T.Yamaguchi, Ceramics Jpn., 19(6), 520(1984)
- 20) Y.Ikuhara, T.Yamamoto, A.Kuwabara, H.Yoshida, and T.Sakuma, *Science and technology of advanced materials*, 2, 411(2001)
- 21) Y.Sakka, Y.Oishi, and K.Ando, *J. Mater. Sci.*, 17(11), 3101(1982)
- 22) Y.Sakka, Y.Oishi, K.Ando, and S.Morita, *J.Am. Ceram.Soc.*, 74(10), 2610(1991).
- 23) H.Yanagita, K.Kawamoto, and M.Miyayama,
 "Kesshouchu deno Kakusan (Diffusion in Crystal) ",pp.125-29 in seramikkusu no kagaku (Chemistry of Ceramics), Edited by H.Yanagita. Maruzen Co., Ltd, Tokyo, Japan, 1996.

著 者

氏名 松 井 光 二 Koji MATSUI 入社 昭和61年4月1日

所属 東京研究所 新材料・無機分野 主席研究員